Wireless World
 RADIO AND ELECTRONICS

Managing Editor Editor : HUGH S. POCOCK, M.t.E.e. H. F. SMITH

Editorial, Advertising and Publishing Offices DORSET HOUSE, STAMFORD STREET, LONDON, S.E.I.

Telephone:	Telegrams :
Waterloo 3333	
(60 lines).	Ethaworld, Sedist
London."	

PUBLISHED MONTHLY Price: 1/6
(Publication dats 26th of precading month) Subscription Rate: 20/- per annum. Home and Abroad

Branch Offices :

Birmingham : King Edward House, New Street, 2. Coventry : 8-10, Corporation Street. Glasgow: $\quad 26 \mathrm{~B}$, Renfield Street, C. 2.
Nan=hester :

260, Deansgate, 3.

In this Issue

EDITORIAL COMMENT 159
GENERAL-PURPOSE OSCILLOSCOPE By J. F. O. Vaughan 160
DRY BATTERY DEVELOPMENTS By R. W. Hallows 166
TELEVISION E.H.T. SUPPLY-2 By A. H. B. Walker 169
PHYSICAL SOCIETY'S EXHIBITION 174
WORLD OF WIRELESS 180
PUSH-PULL INPUT CIRCUITS-5 By W. T. Cocking 183
PHASE By "Cathode Ray " 187
SHORT-WAVE CONDITIONS 191
UNBIASED By "Free Grid " 192
LETTERS TO THE EDITOR 193
RANDOM RADIATIONS By "Diallist " 196
RECENT INVENTIONS 198

VALVES AND THEIR APPLICATIONS
 By M. G. SCROGGIE, B.Sc., M.I.E.E.

No. 17: MULLARD HEPTODE FREQUENCY CHANGER DK9I

THIS is a miniature all-glass single-ended heptode with a filament consumption one twelfth that of a pen-torch bulb. An obvious role for it is in portable receivers, especially of the " personal " calibre.

In this country the triode-hexode is so popular that not everybody may be sure about how to use the heptode, or pentagrid, particularly as there are several different kinds. So here are a few notes on the DK91.

The prescribed range of H.T. voltage is 45 to 90 , but $\mathrm{g}_{2}+\mathrm{g}_{4}$ (used as the oscillator anode) must be limited to $67 \frac{1}{2}$, by a dropping resistor if necessary.

This skeleton circuit diagram is merely to show how the valve should be connected ; the details of tuning arrangements can follow conventional lines. An alternative scheme, for making the whole mutual conductance of the valve effective in the oscillator, is to take the + H.T. lead from the I.F. transformer via the oscillator reaction coil instead of direct. Any voltage-dropping resistor must be inserted on the $\mathrm{g}_{2}+\mathrm{g}_{4}$ side of the reaction coil and shunted by the by-pass capacitor. It is then not available for sharing with the screen of the I.F. valve.

Normally, however, the oscillator section is quite capable of providing sufficient amplitude without help
from the I.F. anode. Such help, too, is liable to be varied by A.G.C. bias on g_{3}.

The amplitude of oscillation is not at all critical, and there is little to be gained by striving earnestly to keep it at optimum all the time; it is generally more important to economise in H.T. current. The amplitude is measured by a micro-ammeter in series with R_{1}. Although $200 \mu \mathrm{~A}$ is recommended, the effective optimum, with $\mathrm{Vg}_{2}+\mathrm{g}_{4}=45$ or so, is nearer $100 \mu \mathrm{~A}$, and there is not much loss of signal even at $50 \mu \mathrm{~A}$. Fortunately the optimum increases with $\mathrm{Vg}_{2}+\mathrm{g}_{4}$. The less oscillator voltage on $g_{2}+g_{4}$ the better; the reaction coil should be comparatively small.
A.G.C. may be applied to the DK91; the grid base is rougnly one fifth of $\mathrm{Vg}_{2}+\mathrm{g}_{4}$. It is important that the g_{3}-to-cathode impedance at oscillator frequency should be low, otherwise the action of g_{3} may be upset by oscillator voltage from $\mathrm{g}_{2}+\mathrm{g}_{4}$. It is true that it can be neutralized out by a few pF from g_{1} to g_{3}, but there is no need for this complication if the previous condition is fulfilled.

This is the seventeenth of a series written by M. G. Scroggie, B.Sc., M.I.E.E., the well-known Consulting Radio Engineer. Reprints for schools and technical colleges may be obtained free of charge from the address below. Technical Data Sheets on the DK91 and other valves are also available.

THE MULLARD WIRELESS SERVICE CO. LTD.,
TECHNICAL PUBLICATIONS DEPARTMENT,
CENTURY HOUSE, SHAFTESBURY AVE., W.C. 2

Wireless World

Husiness Radio

AS we told our readers last month, " business radio" is the term that has now been officially chosen to describe low-power radiotelephone communication systems as used by public utility vehicle and car-hire services, newspapers, towage companies, doctors, etc. The term seems to be an unhappy one-just another example of our seeming inability in the world of wireless to coin the apt name for the new thing. Perhaps our readers can think of something better before it is too late to prevent the title from passing into the language.

But enough of terminology; though the name may be bad, the thing itself is good. More precisely, it is all to the good that radio communication is being extended into fields where it can add to the comforts, amenities and efficiency of life, though perhaps on a rather more humble and less spectacular plane than in some of its older applications. So far as this country is concerned, the kind of radio communication that we are now considering is virtually new: the Post Office, as the supreme licensing authority, has hitherto tended to regard the less serious uses of radio with some disfavour. We are glad that the official attitude has now changed, and that the G.P.O. is now giving sympathetic consideration to applications from all kinds of potential users. The task of allotting licences must be an unenviable one, as many of the applications are apparently of the type that can only be described as frivolous. It is certainly not the intention of Wireless World to advocate the granting of licences for anything approaching such purposes; radio channels are too precious for that, and a "free for all" in the part of the spectrum allocated to low-power telephone services would in the long run be disastrous.

While the whole matter is admittedly in the experimental stage it would perhaps be unwise to enquire too closely into the principles under which licences are, or should be, allotted. On the broadest issue, the good of the community as a whole must clearly come first. Also, no wireless
man nowadays will quarrel with the principle that radio licences should be withheld when other means of communication are adequate.
The position at present seems to be that channels are allotted in relation to the nature of the intended communication and its estimated importance. Thus, a service of the highest importance is granted, so far as possible, an exclusive channel, while those with less substantial claims must share with a large number of other users. This should provide a workable basis for the scheme as a start; indeed, it would be almost impossible to devise any other system with so many points in its favour. By balancing importance of the proposed service against exclusiveness of the channel allocated the dispensation of a rough-and-ready kind of justice between applicants should be made fairly easy. The alternative-summary refusal of a licence for purposes judged to be unimportant-would be likely to lead to greater injustice, and would restrict the natural growth of the service.

Problems of Control

Nobody wishes to see "business radio" entangled in a maze of red tape, especially at this early stage, but fairly close control is clearly essential. The problem, as usual in communications, is to pack as much interchange of useful information as possible into the minimum number of channels. The less important users of the service can rarely expect anything approaching exclusive channels: there must be a good deal of sharing and " waiting turns." This implies some knowledge of, and experience in, the niceties of operating procedure. There must also be a strict ban on "chatter."
Maintenance of the apparatus is likely to present a problem, and we suggest that in this matter something may be learned from the early days of wireless. It would probably suit many users-especially the smaller ones-to obtain their gear on a hire and maintenance contract rather than by outright purchase.

SYOME of the Governmentsurplus radar units now on the market lend themselves admirably to conversion to an oscilloscope. In particular, the Admiralty Type 6 A or 6 B and the R.A.F. Type roQB/24 are suitable for this, and these three units are essentially identical.

The cathode-ray tube is of the electrostatic type with a $6 \frac{1}{2}$-in green screen of short persistence; its type number is VCR97 ($=\mathrm{CV}$ 1097). The unit includes four VR91 (=CViog $=$ Mullard EF50) valves and three VR 54 ($=$ CVIo54 $=$ Mullard EB34) valves, as well as a large number of capacitors, resistors, and potentiometers, and most of the parts in it find application in a conversion.

There are many ways in which such a conversion can be performed and the type of oscilloscope circuit adopted must depend on two factors-the main purpose for which the oscilloscope is required and the material available. It was decided in this case to make the oscilloscope of the general-purpose type, but to bear in mind the particular requiremerits of television. These last demand an especially good frequency response at low and high frequencies and the ability to

This front view shows the controls.

Fig. r. The complete circuit diagram of the oscilloscope together with the base connections (looking at the rear of the tube) of the C.R. tube, type VCR97. The power supply is on a separate chassis and the components mounted on it are $\epsilon \boldsymbol{n}$ =losed within dotted
lines.
handle a wide range of input voltages. In addition, means must be provided for supplying the time-base generator with a synchronizing input of suitable phase, since with the pulse waveforms of television a particular phase of input is desirable for a good lock.

The complete circuit diagram of the oscilloscope is shown in Fig. I. Everything, apart from the power supply, is included on the original radar chassis and the power supply is built on a new chassis beneath it. It will be seen that the signal amplifier comprises three EF 50 valves and provides a push-pull output. The synchronizing signal is taken from the output of the

General

signal amplifier through an EF_{50} buffer stage.

Signal Amplifier.--The first valve V_{1} is a straightforward amplifier having a variable resistor R_{3} in its cathode lead which functions as a gain control. It provides a range of control of approximately 70: 1. The coupling resistor \mathbf{R}_{4} is given a fairly low value ($3.5 \mathrm{k} \Omega$) in order to secure a good highfrequency response.

The output of this stage is taken to V_{2} which forms the input valve of a paraphase pair. The input to the second is secured from the resistance network R_{8}, R_{8}, R_{10} and R_{11} joining the two anodes. Because of the low value coupling

?urpose

of R_{11} are approximately equal but of opposite phase and the centre is at earth potential. Consequently zero sync signal is obtained with the slider at the centre. Turning the control one way gives a sync signal of one phase, turning it the other way gives one of opposite phase.

The anodes of V_{2} and V_{3} are coupled to the horizontal deflector plates of the tube through C_{4} and C_{5} via the switch S_{1}. This enables the deflector plates to be disconnected from the amplifier and joined instead to an alternative input, "Input 2." This is desirable when the oscilloscope is used for the examination of large voltages. With the amplifier in circuit a range of input voltages

Modifying an Ex-Government Radar Unit

By J. F. O. VAUGHAN

10: 1 change of picture size. Without the amplifier the range is extended up to $120 \mathrm{~V} \mathrm{p}-\mathrm{p}$, since the deflection sensitivity for the voltage used is 12 V per cm . Input 2 is not, of course, pushpull.

When the amplifier is in circuit the response is limited by the intervalve couplings, but is adequate down to $50 \mathrm{c} / \mathrm{s}$. At the high-frequency end it is -3 db at $550 \mathrm{kc} / \mathrm{s}, 6 \mathrm{db}$ at $950 \mathrm{c} / \mathrm{s}$ and -20 db at $3 \mathrm{Mc} / \mathrm{s}$. It is adequate for all normal purposes in investigating the pulse waveforms
is a Transitron-Miller integrator. The frequency coverage is from $12.5 \mathrm{c} / \mathrm{s}$ to $10 \mathrm{kc} / \mathrm{s}$ obtained in three ranges by means of S_{2} and S_{3}, the fine control being by R_{24}. The series resistor R_{25} limits the frequency range provided by R_{24}. Sufficient overlap between rangcs is still obtained, however, and its inclusion prevents the very rapid change in frequency which would otherwise occur at low values of R_{24}. It is also necessary as a safety measure, for if it were omitted it would be possible to connect the grid of V_{5} direct to

General-Purposes Oscilloscope-
unusual and the circuit is similar in form to that of the paraphase valve V_{7}. A pair of resistances R_{26} and R_{27} is connected between

V_{6} are roughly at the same mean potentials there is only a small voltage drop across $R_{\mathbf{2 6}}$ and varying the position of the slider does not change the mean potential applied to C_{14} to any great extent. This is an advantage when the coupling time constant is large, for it prevents any large surge when operating the control.

The paraphase amplifier V_{6} and
the coupling causes very little distortion even at $12 \frac{1}{2} \mathrm{c} / \mathrm{s}$.

Because the anodes of V_{5} and

Two pictures of the radar chassis before modification are given here-a general top view on the left and an uider-chassis view above.
of V_{5} is fed from a tapping through C_{14}. Negative feedback occurs to a degree depending on the position of the slider on R_{26} and this acts as a sweep amplitude control. Since except at full amplitude, which is rarely needed, C_{14} and R_{28} are within the feedback loop their effective time constant is greatly increased and
V_{7} is substantially the same as that in the signal amplifier, but the coupling resistors R_{29} and R_{35}

are increased to to $k \Omega$ since a lower limit of high-frequency response is sufficient. Because of the higher value resistors a large output is obtainable and is useful, since it permits expansion of the centre of the sweep to examine details of waveforms. Two equal resistors R_{31}, R_{33} are used for the paraphase feed, but one is shunted by R_{32} to produce the inequality needed for balanced output.

The tube is fed through C_{16} and C_{17}, and here the finite time constant does introduce some distortion of the sweep waveform at very low frequencies. If desired, this distortion can be

The circuit diagram of the original Indicator Unit Type 6A or 6 B is given here for convenience in identifying parts. Other similar units differ slightly in detail.
avoided by omitting $\mathrm{C}_{16}, \mathrm{C}_{17}, \mathrm{R}_{3 \text { 7 }}$ and R_{38} and joining the X-plates of the tube directly to the anodes of V_{6} and V_{7}. However, horizontal shift is not then obtainable, so that in most cases it is desirable to retain the coupling components.

The saw-tooth generator V_{5} is synchronized by a signal applied to its screen-grid from the buffer valve V_{4}. This is necessary to
and it is biased by R_{18} of $5 \mathrm{k} \Omega$ in its cathode. This value of resistor is necessary in order to limit the anode current of V_{4} to a value which does not interfere with the operation of V_{5}. If a lower value is used, V_{5} will not oscillate unless there is a synchronizing signal of some sort. R_{18} is not bypassed. as there is no need to obtain maximum gain from the value.
shifts are obtained from R_{39} and R_{42} respectively. These are connected to the H.T. supply of the signal amplifier and there is about Ioo volts across them. This is sufficient to move the trace in the vertical direction from top to bottom edge of the screen, but owing to the lower sensitivity of the tube in the X -direction, it can shift the time base sideways by

(Top left) This view of the modified chassis shows the sync valve V_{4} and the switch and terminals for Input 2. (Top right) An underview of the chassis showing the timebase components. (Bottom left) In this view the parts of the signal amplifier can be seen. The control shaft of R_{26} has been removed for clarity. (Bottom right) Here the general arrangement of the parts above the chassis is clearly shown.
prevent any feedback from the oscillator into the signal amplifier. Such feedback would produce a distorted trace. V_{4} has its anode tied directly to the screen of V_{5}.
R_{19} (roo $k \Omega$) in the screen is inserted merely to limit the screen current. No bypass capacitor is used here, either.
C.R. Tube. The X - and Y -
only about half the screen diameter. This is usually sufficient, however, to enable any part of the waveform under examination to be brought to the

General Purposes Oscilloscopecentre of the tube. Owing to the very long time constants (2 $\frac{1}{2}$ seconds) of the couplings to the X-plates, it takes several seconds for the trace to come to rest after the X-shift control has been moved.

The potentiometer which supplies the tube voltages is the same as in the original circuit, except
that the value of the brightness control, R_{49} has been changed from $500 \mathrm{k} \Omega$ to $100 \mathrm{k} \Omega$. The former value gives too critical a control. To avoid further changes the value of $500 \mathrm{k} \Omega$ is maintained by inserting a $470-\mathrm{k} \Omega$ resistor in series with R_{49} : This means that a small proportion of the available E.H.T. voltage is wasted, but this is unimportant as the trace is

LIST OF COMPONENTS

Transformers and Chokes

$\mathrm{T}_{1} \quad . . . \quad . . \mathrm{Primary}, 230 \mathrm{~V}$; Secondaries, $1,000 \mathrm{~V}, 20 \mathrm{~mA}$; $4 \mathrm{~V}, 2 \mathrm{~A} ; 4 \mathrm{~V}, 2 \mathrm{~A}$, tapped at $2 \mathrm{~V} \ldots \ldots \ldots$
$\mathrm{T}_{2} \quad \ldots \quad .$. Primary, $200-250 \mathrm{~V}$; Secondaries, $350-0-350 \mathrm{~V}$,
L_{1}, L_{2}, L_{3} $\begin{array}{r}60 \mathrm{~mA} ; 6.3 \mathrm{~V}, 4 \mathrm{~A} ; 5 \mathrm{~V}, 2 \mathrm{~A}, \text { tapped at } 4 \mathrm{~V} \ldots \\ 20 \mathrm{H}, 60 \mathrm{~mA}, 300 \Omega \ldots\end{array} \ldots . . .$.

Vortexion.
Vortexion

Valveholders ... B9G wafer-type for $V_{1}-V_{7}$ (four in original chassis).
$\begin{array}{lll}\text { and Plugs } & \text { 5-pin high-voltage type for } V_{9} \text { and } \text { E.H.T. cable... } & \text { Belling-Lee }\end{array}$ 5 -pin or octal for V_{8} (to suit valve). Octal for H.T. cable. 5-pin plug for E.H.T. cable Bulgin. Octal plug for H.T. cable ... $\quad .$.
Components against which an asterisk (*) has been placed are part of the original radar unit, but may or may not occupy their original positions.
adequately bright and the focus is quite good. The purpose of R_{48} of $39 \mathrm{k} \Omega$ is to provide a minimum bias. The two ends of R_{51} (across the brightness control resistors) are bypassed to earth by C_{19} and C_{24}. These two capacitors have to withstand the full E.H.T. voltage. The grid is decoupled to the cathode by C_{18}. This capacitor has only a few volts across it, but its case must be insulated to withstand the full voltage to chassis. It is most conveniently suspended in the wiring. The resistor R_{44}, in series with the C.R. tube grid is part of the original wiring. It has been left in so that, by discomnecting C_{18}, modulation can be applied to the grid if required.

Power Supplies. The E.H.T. supply is provided by T_{1} which has an H.T. winding of $1,000 \mathrm{~V}$ R.M.S., a rectifier L.T. winding of 4 volts tapped at 2 volts, and a tube heating winding of 4 volts. The tapping on the rectifier L.T. winding is to enable either 2- or 4 -volt rectifiers to be used as desired; the unused lead should be taped or otherwise safely insulated. Smoothing is provided by C_{25} and C_{26} separated by R_{52}. From the circuit diagram it can be seen that C_{24} and C_{25} are in parallel. More of this later.
T_{2} supplies H.T. and L.T. to the signal amplifier and time base. The H.T. winding is $350-0-35^{\circ} \mathrm{V}^{\circ}$ R.M.S. The rectifier L.T. winding is 5 volts tapped at 4 volts to enable 4 - or 5 -volt rectifiers to be used (again the unused lead should be taped) and the valve-heater winding is 6.3 volts. Owing to the very low frequency at which it is sometimes necessary to run the time-base it has been found that separate smoothing for the H.T. feeds to the time-base and signal amplifiers is essential as otherwise the consequent cross-talk results in a curved trace. C_{20} and C_{21} are two sections of an $8-8-\mu \mathrm{F}$ electrolytic capacitor. C_{22} and C_{23} are each similar $8-8-\mu \mathrm{F}$ capacitors having the two sections joined together to form $16-\mu \mathrm{F}$ capacitors. L_{2} and L_{3} are the separate smoothing chokes for the time-base and signal amplifier respectively; L_{1} is the common first filter choke.

The three output leads from the E.H.T. supply are all at high voltage to chassis but have only
a small p.d. between them: they are taken to a 5 -pin high-voltage socket on the chassis and carried by a cable to the oscilloscope

the $300-V$ supply consisting of two + H.T., two heater and one earth lead are connected to an octal socket and thence through a second cable. By this means the leads within each cable do not require very high insulation and the equipment can be easily taken apart and re-connected with the two units side by side for testing purposes.

Mechanical Arrangement. As can be seen from the photographs the original chassis is mounted over the power surply chassis. Valves V_{1}, V_{3}, V_{5} and V_{7} occupy the sockets already in position ; V_{2}, V_{4} and V_{6} are accommodated by replacing the existing octal sockets with the BgG type. This necessitates enlarging the existing chassis holes. The other components which remain in situ are C_{25} and $\mathrm{C}_{26}, \mathrm{R}_{39}$ and R_{42}, the focus control R_{46} and the remaining resistors of the C.R.T. chain apart from the brightness control. The coarse-frequency control switches S_{1}, S_{2} and the gain control R_{3} are also in their original positions. All remaining components should be remored, including the brackets for the potentiometers, together with all wiring except that associated with the C.R.T. chain. As mentioned earlier, C_{24} and C_{25}
are in parallel, the latter on the power supply chassis, and the former on the oscilloscope chassis. This component was left in place as it acts as a useful anchorage for one end of R_{51}. The capacitor C_{25} in the power unit is necessary, however, as $0.02 \mu \mathrm{~F}$ would not be
enough for smoothing purposes.
The photographs show that the C.R.T. chassis is supported by the front panel, and by two strong brackets at the rear. Aluminium has been used for these parts, as well as for the power-pack chassis, as it is easy to work, and strong enough to carry the weight. The clearance between the two decks is just enough to accommodate the chokes and the transformers. The capacitors C_{16} and C_{17} are mounted above the chassis, and as the upper frequency limit is only $10 \mathrm{kd} / \mathrm{s}$ the capacitance to chassis of these components does not have any detrimental effect. The arrangement relieves congestion below the chassis. The other capacitors C_{14} and C_{15} are metal-cased tubular types mounted beneath the chansis.

Great care must be taken to maintain good insulation of the leads connected to the grid of the oscillator. If there is a leak to chassis oscillations may cease when R_{24} exceeds a certain value, as the operation of the circuit depends upon the tendency of the grid potential to rise to the + H.T. level.

Care must also be taken over insulation in all circuits where
$5-\mathrm{M} \Omega$ resistors are used and, in particular, of R_{51} and associatee components. Excessive surfacd leakage in the case of the 5 -M Ω resistors will affect the lowfrequency response adversely, while leakage across R_{51} will make it impossible to black out the trace.

No provision has been made in this model to enable direct connections to be made to the \mathbf{X} - and Y-plates, since it is not often needed in ordinary work. If it is needed for any special purpose the modifications are obvious.

No arrangements for blacking out the trace during flyback are included because simple methods have a certain drawback. If it is desired, it can be fitted by including a $5-\mathrm{k} \Omega$ resistor in the grid lead of the tube and connecting a $50-\mathrm{pF}, 1,500 \mathrm{~V}$ capacitor from the tube grid to the anode of V_{6}. The saw-tooth is positive-going on the anode of V_{6} and the capacitor and resistor differentiate it and produce a pulse waveform on the tube grid which is negativegoing on the flyback.

This simple scheme works excellently, but has the defect that the brightness of the trace varies considerably with the setting of the Fine Frequency Control. This is because the flyback time tends to be independent of frequency, so the scan/flyback ratio decreases with frequency, and in the derived pulse wave the mean level alters. The effect could doubtless be overcome by using a D.C. restoring diode at the tube grid, but this seems a complication which is hardly worth while.

Anti-Interference

TWO reports dealing with the subject of electrical interference with radio reception have recently been issued by the Electrical Research Association (15, Savoy Street, London, W.C.2).
" The Measurement of Radio Interference by the Modified Reception Set Rzo6, Mark I," describes the conversion into an interference measuring set of an ex-Army receiver. A limited number of these receivers will be made available for industry. The report costs 13s 6d.
" Radio Interference Tests on an Electrified Railway" (price is 6d), details measurements of interference in the frequency range $0.6-5 \mathrm{Mc} / \mathrm{s}$ at various points and at varying distances from the track.

Dry Battery Developments

The R.M. Mercury Cell

By R. W. HALLOWS, M.A.Cantab, M.I.E.E.

THERE can be no doubt that there is a real demand today for a primary dry cell of greater efficiency than those which are passed over the counter in response to our demands for "refills" for our pocket flashlamps, or to replace the run-down H.T.B.'s (and it may be the fila-ment-heating batteries) of portable wireless receivers, or those of the stationary type, which must be used when and where no suitable mains supplies of current are available. Nor is it only the consumer who has this feeling. Designers of a multitude of different kinds of valve-operated devices, intended to be independent of mains supplies, have long held that they were being let down by those whose advances in the realm of primary cells might have been expected to keep pace with progress in electronics.

The cold, hard facts are: (I) that the only type of dry primary cell now generally available is identical, save for minor improvements, with that used by our grandfathers; and (2) that, apart from air-depolarizer types (whose size and weight rule them out for use in portable apparatus) Leclanché cells suffer from the defect that the depolarizer never, so to speak, catches up with its job. In other words, the internal resistance of the cell rises steadily under discharge, with a consequent drop in E.M.F. To fall into line with the vicious circles and vicious spirals of which so much is heard nowadays, we may describe the discharge curve of such a cell, under intermittent load, as a vicious saw-tooth! The tip of no tooth is quite as high as that of the one immediately before it; the valleys between the teeth reach continually lower levels as the discharge periods follow one another.

The dry Leclanché cell has its good points. It is reasonably cheap to produce and fairly light; in use it is as nearly trouble-free
as makes no matter; its shelf-life is reasonably good in its usual form, and, if made up in inert form, it can be stored for years with little deterioration. But, though valve designers have done wonders in producing batteryoperated valves which continue to perform remarkably well despite a falling off in both filament and anode voltages, that vicious sawtooth discharge curve is a very big, bad wolf.

I am far from saying that the Ruben mercury cell, developed by the P. R. Mallory Company of Indianapolis, U.S.A., gives all the answers to our prayers. It doesn't.
of mercury cell. This is I.Igin in diameter by 0.46 in in depth and weighs I.I Oz.

Figs. 2 and 3 show two different methods of cell construction. In the rolled-anode cell (Fig. 2) the negative element is a strip of zinc foil, placed between two strips of alkali-resistant absorbent paper and rolled up. The paper serves to hold the electrolyte, a solution of caustic potash (KOH). The zinc roll is separated by a barrier of dense, alkali-resistant dialysis paper from the depolarizing anode, which consists of a pellet of mercuric oxide (HgO). The copper cover of the cell makes direct contact with the zinc anode and so forms the negative terminal. It is insulated by a sealing gasket of synthetic rubber from the steel can, which is in direct contact with the cathode and forms the positive connec-

Fig. I. Discharge curves of a mercury cell I.19in dia. and 0.46 in deep, weighing I.I oz. tion.

The pressed-powder-anode cell (Fig. 3) is basically similar, save that its anode consists of a pellet of powdered zinc.
It will be noticed that the cell is the exact opposite of the dry Leclanché in that its can is positive. Another construc-

To begin with it costs more than the dry Leclanché cell. Again, its open-circuit E.M.F. is only I.34V compared with the rather over 1.5 V of the Leclanché. But it represents an entirely new cell, constructed on lines different from those of any other; and a cell roughly $\frac{4}{5}$ in in diameter by $\frac{1}{2}$ in deep, weighing just over $\frac{1}{2}$ oz, will supply 31 mA continuously for 37 hours with a closed-circuit voltage of I.O-I. 2 V . A smaller cell of half the weight will furnish 18 mA within the same voltage limits for a similar period. A larger type, with a weight still well under the ounce, has a life (to a cut-off of IV) of 60 hours under a load of $31 \mathrm{~mA}, 76$ hours at 25 mA and 9 I hours at 20 mA . Fig. I shows discharge curves for the largest type
tional difference which makes for increased compactness, is this. In the Leclanché cell the bulkiest component is the sac of depolarizer surrounding the cathode. This is eliminated. since the mercuric oxide cathode helps to produce an automatic depolarization within the cell.

The chemical reactions in the cell are of a very complex nature and they have not yet been fully worked out. The authors of a paper read before the Electrochemical Society of America last year admit this. ${ }^{1}$ They give, at the same time, some exceedingly
${ }^{1}$ M. Friedman and C. E. McCauley: "The Ruben Cell: A New Alkaline Primary Dry Cell Battery." Trans. of the Electrochemical Society of America, Vol. 92, 1947.
interesting facts about the working of the cell. They show, for example, that from 80% to 90% of the active materials of the cell are used up during discharge Compare this with the Leclanché

Fig. 2. Half-section drawing showing construction of the mercury cell in rolled anode form. I. zinc foil; 2. absorbent material; 3. mercuric oxide pellet ; 4. steel can ; 5. copper top of cell; 6. synthetic rubber gasket; 7. insulating barrier.
dry cell, which always " dies with much of its zinc unconsumed.

The Ruben-Mallory (R.M.) cell is symbolized as follows by the authors of the paper mentioned: $\mathrm{Zn} / \mathrm{Zn}(\mathrm{OH})_{2}(s)$, $\mathrm{KOH}(a q)$, $\mathrm{HgO}(\mathrm{s}) / \mathrm{Hg}$
where $s=$ solid and $\dot{a} q=$ aqueous.
The overall reaction is
$\mathrm{Zn}+\mathrm{H}_{2} \mathrm{O}+\mathrm{HgO} \longrightarrow \mathrm{Zn}(\mathrm{OH})_{2}+\mathrm{Hg}$

$$
\mathrm{ZnO}+\mathrm{H}_{2} \mathrm{O} .
$$

No ingredients will suffice for the making of a dry cell of practical value unless they are such that a condition of chemical equilibrium is reached and maintained when the cell is on open circuit. To put it in another way, the electrolyte must, on open circuit, quickly reach a condition in which it is unable to attack the zinc. This happens in the Leclanché cell because very shortly after the introduction of the electrolyte of sal ammoniac ($\mathrm{NH}_{4} \mathrm{Cl}$) and water, the solution becomes saturated with positive ions of zinc chloride : mutual repulsion, therefore, prevents the entry of further such ions into the electrolyte-until the cell is put on closed circuit.

In the mercury cell equilibrium is reached rather slowly after a complicated series of reactions. Immediately after it has been made the O.C. voltage is about 1.36. This falls sharply to a little
above 1.35 within 24 hours. There is then a further slower fall to the normal O.C. voltage of 1.34 . It is known that zinc oxide and potassium zincate are formed during this "settling down" period.

Fig. 3. Pressed-p ow de r-anode version of the mercury cell. I. powdered zinc anode ; 2. electrolyte absorbent ; 3. mercuric oxide; 4. steel can; 5. copper top; 6. synthetic rubber gasket; 7. barrier.

When the cell is placed under load sufficient zincate ions are available to make the oxidation products almost entirely ZnO and $\mathrm{Zn}(\mathrm{OH})_{2}$: there is hardly any possibility of the formation of gaseous hydrogen.

The internal resistance of the cell is not stated, but from the flash currents (that is the peak currents registered on momentary connection to an ammeter) as given by the makers it would appear to be higher than that of a small Leclanché cell. Flash currents range from $0.5-0.8 \mathrm{~A}$ for the smallest R.M. cells to t.t-r.8A for
portant point, however, is that the internal resistance of the R.M. cell remains substantially constant under loads of approximately 100 mA per square inch of cathode surface area.

The shelf-life of the cell is good. Tests made on cells stored for two years and three years show results little inferior to those given by cells of the same batches shortly after manufacture.

To sum up: the R.M. cell is revolutionary in its design (no other cell has electrodes and electrolyte completely sealed in a metal case) and in its performance (no dry cell now in use can match the constancy of its E.M.F. under heavy loads) ; but is it groing to revolutionize methods of L.T. and H.T. supply in portable apparatus? It was so used very satisfactorily by the American fighting services during the war; but in wartime expense is not often a primary consideration. I welcome the R.M. cell because it represents a breakaway from accepted methods and accepted standards of far too long standing. I do not believe that in its present form and at its present price it is likely to oust the dry Leclanche cell. But the new ideas which it incorporates are capable of interesting developments and it may well point the way to the really efficient dry cell for which we have for so long been waiting.

Addendum

By D. W. Thomasson
Mercury cells are now being made by Mallory Batteries, Ltd., of Belfast: the only British-made

Various sizes of R.M. cells.
the largest. From good-quality Leclanché cells of the sizes used in H.T.B.'s of various capacities one usually obtains flash currents of from about 2 A to 5 A . The im-
cell commercially available at the present time is the RMB-3. This single-cell unit measures in in diameter and $\frac{2}{3}$ in in height, and is stated to have an average

Dry Battery Developments-
capacity of 1.45 ampere-hours. The maximum continuous drain is 65 mA , but much heavier currents may be drawn intermittently. Internal resistance is of the order of 2.5 S.

This cell has been used to some extent for hearing aids, and is especially suitable for use with the new sub-miniature valves being produced by Mullard and Hivac. One cell suffices for four amplifier valves of this type, or two amplifiers and one output.

It has also been used to provide a comparison standard in a pocket

No HT batteries made up from these cells are available, but pro-

The British-made cell is shown here actual size.
duction to special order would be considered.

instrument for the measurement of light transmission. The high voltage stability is of considerable value here.

The photograph shows the general appearance of the cell and the graph indicates the high voltage stability.

The "Phasitron"

Application in Sound Amplification

AS a result of investigations into the causes of parasitic oscillations in frequency changers (see Wireless World, August 1oth, 1939) J. A. Sargrove has evolved a sensitive method of detecting small phase differences. When an R.F. voltage is applied to the suppressor grid (G_{3}) of a pentode under certain conditions, a voltage of similar frequency is induced at the working grid G_{1} due to electrons which, by virtue of their velocity, are able to penetrate the positive screen grid $\left(G_{2}\right)$ and impinge on G_{1}.
If a tuned circuit is connected between G_{1} and earth, the phase of the induced voltage varies as the
circuit is tuned through resonance, and the anode current of the valve which depends upon the relative phase of the voltages on G_{1} and G_{3} fluctuates first above and then below its mean value. The anodecurrent/ p phase characteristic includes a steep straight portion which is chosen for the operating point, and it is then possible to record minute changes of capacitance in the tuned circuit. The efficiency of indication is proportional to the square of the mean frequency and at $40 \mathrm{Mc} / \mathrm{s}$ the full length of the anode-current/ phase characteristic is swept for a change of o.I pF.
The system responds to step
changes of capacitance and can be used as an ultra-micrometer. When used in association with a condenser microphone the frequency response could be flat from zero to I Mc/s (sub-sonic as well as super-sonic) lepending on the mechanical characteristics of the diaphragm. The upper limit is set by the filter circuits necessary to eliminate the R.F. component of the output.

At a meeting of the British Kinematograph Society on March roth, J. A. Sargrove, in collaboration with D. A. Ball and N. Leevers, read a Paper on "' Phase Modulation Principles Applied to Sound Recording " in which a new condenser microphone for film recording studios incorporating the "Phasitron" system of amplification was described. The condenser diaphragm is only $\frac{1}{2}$ in in diameter and causes the minimum disturbance of the sound field. It was pointed out that as the excitation is at $40 \mathrm{Mc} / \mathrm{s}$ it might be possible to radiate the microphone output from a small folded dipole and so have a number of microphones, working on slightly different frequencies, hidden on the film "set," with a remote pickup and mixing control unit behind the cameras, thus obviating the complication of overhead booms and trailing cables.

A.R.R.L. 1948 Handbook

THIS, the 25 th edition of the amateur Radio Relay League of America's Handbook, has been completely revised and now contains 25 chapters of theoretical and practical matter.
It reflects the growing interest of American amateurs in V.H.F. and microwaves, containing as it does practical descriptions of apparatus for use on frequencies up to 21,000 Mc / s.
V.H.F. is clealt with far more comprehensively than hitherto but not at the expense of the still ever popular H.F. bands. Transmitters and receivers to suit all needs are to be found in chapters 5 to 10 inclusive.
, The data on American type valves is as comprehensive as ever and this year a table of klystrons has been added. There are two pages of tabular matter on cathode-ray tubes and several of the types listed were used in American Service equipment.

The Handbook is obtainable in this country from A. F. Bird, 66, Chandos Place, London, W.C.2, at i7s 3d including postage, or it can be ordered through the Radio Society of Great Britain (for delivery direct from the U.S.A.) at 12 s 6 d including postage.

Rectifiers's it's plain to see- can be BRIMARIZED with an ${ }^{*}$ SB3

THE Brimar metal rectifier type SB3 $_{3}$ is a big brother to the popular SB2 and is rated at 250 volts, 65 mA . It is fitted with an insulated bracket and may be mounted horizontally on chassis or cabinet as required.

The SB, will replace the ${ }^{117}$ Z6GT in the usual American AC/DC/Battery
 receiver and will substitute for the rectifier sections of types ${ }_{11} 7^{\prime} N_{7} G T,{ }_{11}{ }^{\prime} P_{7} G T$ and ${ }_{H}>\mathrm{L} / \mathrm{M}_{7} \mathrm{GT}$. In such receivers, the filament supply for the battery valves is taken from the rectified H.T. via a suitable dropping resistor.

After Brimarizing, the H.T. should be between 80 and roo volts and this must give 1.4 volts across each filament section. To obtain these readings the line cord may need adjustment, an average value being 800 ohms for a mains input of 230 volts.

If modulation hum is present, it may often be eliminated by fitting an 8 mF . condenser between the screen grid (Pin 4) of $1 A_{7} G$ and chassis.

TYPE	CHANGE SOCKET		OTHER WORK NECESSARY	PERFORMANCE CHANGE
	FROM	TO		
II7Z6GT	NO	NGE	1. Fit rectifier Type SB3. 2. Connect + ve (Red) tag. to Pins 4 and 8 of Valve Socker. 3. Connect - ve (Black) tag to Pins 3 and 5 of Valve Socket.	Receiver will function almost immediately on switching on," no warm-up time being necessary.

IMPORTANT. The SB3 is a direct replacement for the rectifier type RDI819\|I used in the new "Double
Decca "and Collaro "Microgram."

Voritach

This is a 10 -valve amplifier for recording and play-back purposes for which we claim an overall distortion of only 0.01 per cent., as measured on a distortion factor meter at middle frequencies for a 10 -watt output. The internal noise and amplitude distortion are thus negligible and the response is flat plus or minus nothing from 50 to $20,000 \mathrm{c} / \mathrm{s}$ and a maximum of .5 db down at $20 \mathrm{c} / \mathrm{s}$.
A triple-screened input transformer for $7 \frac{1}{2}$ to 15 ohms is provided and the amplifier is push-pull throughout, terminating in cathode-follower triodes with additional feedback. The input needed for 15 watts output is only 0.7 millivolt on microphone and 7 millivolts on gramophone. The output transformer can be switched from 15 ohms to 2,000 ohms, for recording purposes, the measured damping factor being 40 times in each case.
Built-in switched record compensation networks are provided for each listening level on the front panel, together with overload indicator switch, scratch compensation control and fuse. All inputs and outputs are at the rear of the chassis.

MODEL A.D./47 10-VALVE TRIODE CATHODE FOLLOWER AMPLIFIER

Send for full details of Amplifier type AD/47

C.P.20A. 15 watt AMPLIFIER

for 12 volt battery and A.C. Mains operation. This improved version has switch change-over from A.C. to D.C. and "stand by " positions and only consumes $5 \frac{1}{2}$ amperes from 12 volt battery. Fitted mu-metal shielded microphone transformer for 15 ohm microphone, and provision for crystal or moving iron pick-up with tone control for bass and top and outputs for 7.5 and 15 ohms. Complete in steel case with valves.

As illustrated. Price $£ 2800$

RECORD REPRODUCER

This is a development of the A.C. 20 amplifier with special attention to low noise level, good response ($30-18,000 \mathrm{cps}$.) and low harmonic distortion (1 per cent. at 10 watts). Suitable for any type of pick-up with switch for record compensation, double negative feedback circuit to minimise distortion generated by speaker. Has fitted plug to supply 6.3 v . 3 amp . L.T. and $300 \mathrm{v} .30 \mathrm{~m} / \mathrm{a}$ H.T. to a mixer or feeder unit.
 Complete in metal cabinet and extra microphone stage. As illustrated. Price $25 \frac{1}{2}$ Gns. CHASSIS, without extra microphone stage. Price $\mathbf{E 2 1}$.

Television E.H.T. Supply

2.-Voltage Multipliers: New Low-voltage Input Circuit

IN the first article ${ }^{1}$ the performance requirements of a good E.H.T. supply were considered and three alternative systems were discussed. These were (a) E.H.T. mains transformer and rectifier, (b) R.F. power oscillator and rectifier and (c) Pulse-driven voltage-multiplier fed from the line output transformer. In ad-
' Wireless World, April 1948.

By A. H. B. WALKER, B.Sc. (Hons.), A.M.I.E.E.
(Research Laboratory, Westinghouse Brake and Signal Company)
dition to the last two methods of dispensing with the E.H.T. mains transformer, the writer has recently proposed a multipliercircuit which achieves the same object by producing E.H.T. from
the normal centre-tapped H.T. transformer without using an excessive number of multiplying stages.

Almost all present-day television receivers include a mains transformer having a centretapped H.T. winding for the provision of the anode supply to the receiver and time-base valves. This transformer is usually wound for $350-0-350$ volts. Consequent-

(a)

(e)

Fig. 6. Principle of operation of the Cockcroft-Walton voltage multiplier.

Television E.H.T. Supply-

ly most sets have available a 7oo-volt A.C. supply with an earthed centre tap, and it would be very useful if this could be used to 'produce an E.H.T. supply by some form of voltage multiplier. This cannot be achieved economically with conventional multiplier circuits, but in order to follow the development of the proposed system it is useful first to consider a normal Cockroft multiplier and to analyse its operation.

Cockroft Multiplier. A single half-wave section is shown in Fig. 6 (a), and in (b) the various potentials with respect to earth are illustrated as waveforms. The voltage to earth at point A is the transformer voltage as shown in Fig. 6 (b), but since capacitor C_{1} soon becomes charged to the peak of the supply voltage, the voltage to earth at B is the same input voltage as at A, but with the addition of the steady charge on C_{1}, so that the positive peak reached at B is the original peak at $A(=\sqrt{2} V)$ plus the charge on C_{1}; that is, a total of $2 \sqrt{ } 2 \mathrm{~V}$. This peak voltage at B can easily be
easy going, but it is usually found more difficult to visualize the operation of the later stages. However, looking again at (d), it can be seen that, while point C remains at a steady positive potential, point B reaches earth potential once every cycle. Now, forgetting absolute voltages to earth for a moment, and thinking only of relative voltages, this means that once in every cycle, C becomes positive with respect to B to the extent of the full doublepeak voltage of the input wave. When this happens there is no reason why a half-wave rectifier and capacitor should not be joined between C and B to take advantage of this fact, as it is a purely " local " matter concerning only the points B and C, and the relative potential between them. This has been done in Fig. 6 (e) with MR_{3} and C_{3}, and just as in a normal half-wave circuit, forward current will flow through MR_{3} as indicated, and C_{3} will charge up to the peak of the voltage between C and B. The result is that the point D will remain permanently above point B at the maximum
B, but that B sinks below C : We have now a steady charge in C_{3} equal to $2 \sqrt{ } 2 \mathrm{~V}$, and therefore the potential to earth of point D is easily obtained by adding this to the potential of point B. This is seen in Fig. 6 (f), and clearly, a peak of $4 \sqrt{ } 2 \mathrm{~V}$ to earth is reached by D every cycle. This peak voltage to earth can be rectified and stored by MR_{4} and C_{4} (just as the high peak voltage to earth of point B was rectified and stored by MR_{2} and C_{2}), so that point E remains permanently at the peak reached by D once per cycle; i.e., $4 \sqrt{ } 2 V$.

To recapitulate briefly, when the earthed end of the transformer is positive with respect to $\mathrm{A}, \mathrm{MR}_{1}$ charges C_{1} to the relative peak between A and earth, and MR_{3} charges C_{3} to the relative peak between C and B; in the next half-cycle, when A is positive with respect to earth, MR_{2} charges C_{2} to the peak voltage reached by B , and MR_{4} charges C_{4} to the peak voltage reached

Fig. 7. (a) Series-fed multiplier ; all capacitors, except the first, charge to equal voltages, but must carry different currents. (b) Parallel-fed multiplier ; all capacitors, except the last, carry equal currents, but must withstand different voltages
rectified and stored by adding a further rectifier and capacitor as shown in Fig. 6 (c). At each cycle when point B reaches the peak, a current will flow into C_{2} through MR_{2} as shown, and will soon charge C_{2} up to the peak voltage reached by point B (i.e., $2 \sqrt{2} V$). There will then b ? this steady voltage available at C without any superimposed alternating voltage [Fig. 6 (d)]. Thus far it has been
potential which C ever reaches above B or, in other words, C_{3} becomes charged to a steady potential of $2 \sqrt{2} \mathrm{~V}$.

By considering relative voltages only, and realizing that C becomes positive relatively to B , and therefore carries D with it, we avoid the difficulty which results from trying to visualize the absolute conditions, which are of course that C does not rise above
by D. Naturally, any number of stages can be added, the only limitation being the voltage drop in the feed capacitors along the chain.

Series or Parallel Feed. Since in Fig. 6 (e) the alternating feed current to all the rectifiers has to be conveyed along the chain of series-connected capacitors, this current is greatest near the transformer, and decreases along
the cascade. It is, therefore, clearly desirable (particularly with a large number of stages) to use larger capacitors at the feed end, and to decrease the values progressively along the cascade.

This arrangement is known as a "series fed " multiplier, and although it ideally requires graded capacitance values, it has the advantage that all the capacitors (except C_{1}) can be rated for equal voltages. In Fig. 7 (a) this circuit is redrawn, but with the voltage and current distribution indicated, in order to bring out the points of difference from Fig. 7 (b) which shows the " parallel-fed " arrangement. In the parallel-fed circuit, all the feed capacitors are returned directly to the transformer, and have to carry equal currents (except the last); they can therefore be made equal in capacitance, but have to withstand progressively increasing voltages along the cascade as indicated in Fig. 7 (b).

Ripple and Regulation. From what has been said it will, be apparent that the cascade multiplier is virtually a series of halfwave rectifier circuits, so contrived that each succeeding section rectifies and stores the peakinverse voltage developed across the rectifier of the previous section. In a simple half-wave circuit the forward pulse of current through the rectifier which occurs once in each cycle, has to replace the charge given up by the capacitor to the load during the remainder of the cycle. The ripple voltage is, of course, due to the fact that the capacitor voltage must drop while it is being discharged, and must rise again during the recharging period. The extent of this voltage drop depends on the discharge current 1 , the time of discharge t, and the capacitance C. If $V_{\mathbf{B}}$ is the ripple voltage, Q is the capacitor charge in coulombs and q is the change in charge, then

$$
\begin{array}{ll}
\text { but } & q=\mathrm{I} t \\
\therefore & \mathrm{Q}=\mathrm{CV} \\
\therefore & \mathrm{~V}_{\mathrm{R}}=\frac{q}{\mathrm{C}}=\frac{1 t}{\mathrm{C}}
\end{array}
$$

If f is the operating frequency, we may write $t=1 / f$ hence

$$
\mathrm{V}_{\mathrm{R}}=\mathrm{I} / f \mathrm{C}
$$

Now, in the series-fed multiplier of Fig 6 (e), the total ripple voltage is the sum of the in-
dividual ripple voltages on C_{2} and C_{4}, so that

$$
\mathrm{V}_{\mathrm{R}}=\frac{\mathrm{I}}{f}\left(\frac{\mathrm{I}}{\mathrm{C}_{2}}+\frac{\mathrm{I}}{\mathrm{C}_{4}}+\cdots \frac{1}{\mathrm{C}_{n}}\right)
$$

and it can be shown that for a

NORMAL H.T
RECTIFIER
Fig. 8. A series-fed multiplier coupled to half of the H.T. transformer winding. At least 12 stages are needed to develop 5 kV on load and the voltage regulation is much too poor for television purposes unless the capacitors are made uneconomically large.
total of n full stages (i.e., $2 n$ capacitors and $2 n$ rectifiers)

$$
\begin{equation*}
\mathrm{V}_{\mathrm{R}}=\frac{\mathrm{I}}{f \mathrm{C}} \cdot n\left(\frac{n+\mathrm{I}}{2}\right) \tag{I}
\end{equation*}
$$

This relationship shows that the ripple voltage can be reduced by reducing the load current or increasing either the frequency or the capacitance values, but that the ripple increases with an increasing number of stages.

By a similar analysis it can also be shown ${ }^{2}$ that the voltage regulation V_{d} (or steady voltage drop from the theoretical output voltage), assuming perfect rectifiers, approximates to

$$
\begin{equation*}
\mathrm{v}_{d}=\frac{\mathrm{I}}{f \mathrm{C}} \cdot \frac{2 n^{3}}{3} \tag{2}
\end{equation*}
$$

By comparing equations (I) and (2) it is interesting to note that the

[^0]ripple voltage is roughly equal to the regulation voltage drop divided by the number of full stages n.
E.H.T. from the Normal H.T. Transformer. When applying a multuplier to a normal 350-0-350 volt transformer, the first natural step is to connect the seriesfed multiplier of Fig. 7 (a) to one-half of the normal transformer, as shown in Fig. 8, so that the earth side of the multiplier is joined to the transformer centre tap. This will produce E.H.T., but since only half the transformer winding is used, the number of 'stages required is excessive. For example, if a 350-0-350 volt transformer is used, the theoretical output per stage on no-load will be only $\sqrt{2} \times 350=500$ volts, while the average stage output when loaded will be about 20 per cent lower, so that 12 or 14 stages will have to be used. Apart from this complication, the performance will be very poor, since, as we have seen above, the regulation increases as the square ${ }^{3}$ of the number of stages, and it would be quite impracticable to achieve the figure of 10 per cent per 100 microamperes change which we have seen is the worst regulation which can be tolerated (see Part 1).

In an attempt to improve

Fig. 9. A series-fed multiplier connected across the whole centretapped transformer winding is also unusable for television, as 350 volts A.C. is added to the E.H.T. generated by the multiplier.

Television E.H.T. Supply-

matters the multiplier might be connected across the whole transformer winding as in Fig. 9. This immediately halves the number of stages required, and improves the regulation by a factor of 4, but unfortunately half the transformer voltage (350 volts A.C.) becomes added to the steady voltage produced by the multiplier, so that the E.H.T. output is unusable for television purposes.

These difficulties can be overcome by the new circuit ${ }^{4}$ shown in Fig. io. Here two half-voltage rectifier sections $M R_{1}$ and $M R_{5}$ are used at either end of the cascade, thus enabling A.C. symmetry to be preserved, and preventing any alternating voltage from being injected into the highvoltage output. Moreover, the unwanted alternating voltages at both ends of the multiplier now become rectified by MR_{1} and

Fig. 10. New multiplier arrangement suitable for operation from a transformer with an earthed centre tap. The circuit is symmetrical, provides full-wave rectification, and does not inject A.C. into the E.H.T. output. Additional stages may be added at the centre without disturbing the symmetry. Negative E.H.T. can be obtained by reversing the rectifiers.
MR_{5} and contribute to the E.H.T. output, while the central rectifiers $\mathrm{MR}_{2}, \mathrm{MR}_{3}$, and MR_{4} still continue to multiply the peak of the total transformer voltage. In Fig. Io, only three full sections are shown

[^1]for simplicity, together with two half sections, but since these half sections contribute to the output, the total E.H.T. voltage is exactly the same as if four full sections had been used; i.e., $4 \sqrt{2} \mathrm{~V}$. This circuit can be fed, as it stands, from an existing centre-tapped transformer which is already feeding a conventional centre-tapped rectifier for normal H.T. purposes. Thus, both H.T. and E.H.T. supplies can be satisfactorily derived from the same winding, and they will have a common earthed negative pole, as shown in Fig. If.

However, there is a further modification which can be made to the basic circuit of Fig. Io which will enable a somewhat highor output voltage to be obtained without using any more multiplier sections, and this is shown in Fig. 12. Here the feed-end half-section rectifier, MR_{1} (which, in Figs. 10 and II, was returned to earth) has been connected to the rectifier valve cathode. Owing to the presence of the large reservoir capacitor C_{r}, this point is virtually at earth potential as far as alternating voltages are concerned, so that the operation of the multiplier is not affected. The mean potential of the cathode, however, is about 400 volts positive to earth, so that this additional voltage will be passed along the rectifier cascade and will increase the E.H.T. output voltage by the same amount. It almost appears that this advantage has been gained without any corresponding cost, and this is almost true, but in fact the voltages on C_{1} and C_{2} are both increased, as well as the desired increase in voltage on C_{3}. In general, if the total transformer voltage is $V_{\text {вм }}$ and the number of full section - rectifiers is $2 n$, as before, the theoretical open circuit output voltage will be $\sqrt{ } 2 V(2 n+1.5)$, and the earlier calculations on ripple voltage and regulation will still apply to a first approximation. Capacitor voltage ratings should be as follows,
$\mathrm{C}_{1}, \sqrt{2} \mathrm{~V} ; \mathrm{C}_{2}, \sqrt{ } 2 \mathrm{~V}(2 n+\mathrm{I} .5) ;$ all others $2 \sqrt{ } 2 \mathrm{~V}$. For the arrangement of Fig. 12, therefore, and assuming a $350-\mathrm{o}-350$ volt sinusoidal input, the theoretical maximum output would be 6.5 kV . C_{1} would be rated at I kV and all
other capacitors at 2 kV . These voltages, however, are open circuit figures, and assume no leakage

Fig. II. The multiplier of Fig. Io may be directly connected to a transformer which is already supplying H.T. through a normal rectifier (shown in heavy lines). Both E.H.T. and H.T. supplies then have a common earthed negative pole.
current in the rectifiers. In practice, both the forward resistance and reverse leakage of the rectifiers limit the output voltage reached on open circuit, and by good design this limiting effect can be used to obtain better regulation than would be possible with rectifiers having no reverse leakage at all.

The "Westeht" Unit. We have seen that by using the circuits of Figs. 1o, II or 12, it is possible to derive E.H.T. voltage efficiently from the existing transformer without making any alteration whatever to the normal H.T. rectifier circuit. This means that, quite apart from the possibility of incorporating the circuit in new receivers it would be particularly useful to have it, available as a complete " add-on" unit which could be used to provide E.H.T. from the ordinary transformer in receivers which have been put out of action through failure of the E.H.T. transformer. The recently introduced " Westeht" E.H.T. supply
unit, which incorporates this circuit, has been designed with this in view. The complete circuit is shown in Fig. 13, together with the approximate distribution of potentials up the cascade when operating under load, and fed from a $350-0-35^{\circ}$ volt transformer. In its mechanical form the rectifiers are mounted horizontally on one side of an insulating panel, while the feed capacitors are arranged vertically on the opposite side.

To protect the components from damage, and from electrostatically attracted dust, and also to reduce the risk of shock, the assembly is normally mounted in a housing consisting of a vertical tube of insulating material to which the moulded end plates are cemented, the E.H.T. terminal being brought

Fig. I2. By connecting the negative end of the half-section feedend rectifier (MRI) to the rectifier valve cathode, the normal H.T. voltage becomes added to the multiplier output voltage without disturbing its operation. In practice this adds about 400 volts to the E.H.T. output.
out at the top. The base is designed for single hole fixing to the chassis, and three clearance holes are also required to accept the projecting bosses which carry the colour-coded input tags through the chassis. The chassis area required is less than that which would be occupied by an E.H.T. transformer with its asso-
ciated rectifier, while advantage has been taken of the great headroom which is normally available in a television receiver on account of the large cathode-ray tube. The total weight is much less than the weight of an E.H.T. transformer, and apart from any other advantages, it is worth noting that no scarce materials, such as silicon steel or fine-gauge copper wire, are needed.

The regulation is shown in Fig. 14 and it can be seen that it is only approximately 7 per cent by our earlier definition, and this is well within the allowable limit of 10 per cent. The output ripple is very small, since rectification is fullwave instead of the usual halfwave, and no smoothing is necessary beyond the single reservoir capacitor, which should be 0.05 to o. I $\mu \mathrm{F}$; no series smoothing resistor is needed. In fact, since the reservoir capacitor also acts as the feed capacitor to the final half-section rectifier, it is important to note that no resistor should be connected between it and the output terminal of the Westeht, or the F.H.T. voltage will be reduced, and the regulation will be impaired Some reduction of output voltage is possible without affecting the regulation or reducing the input voltage by connecting the lead marked "yellow" in Fig. I3 to earth instead of to the rectifiervalve cathode; the circuit then becomes that of Fig. II, and the E.H.T. voltage will be reduced by about 400 volts.

Summary - Future Trends. Although it is perhaps unwise to attempt to forecast future developments in such a rapidly advancing subject, it is probably true to say that the recent development of miniature highvoltage metal rectifiers will result in the wider use of multiplier circuits in many varied forms. For lowpriced receivers which do not include a mains transformer, the pulse multiplier operating from the line fy-back (Part 1) now appears very attractive; while for medium-priced
receivers, and for the rapid servicing of sets with faulty E.H.T. transformers, the

Fig. I 3. Complete Westeht (Model I) circuit showing how the unit is fed from a conventional centre-tapped transformer and rectifier. The approximate distribution of potential on load is shown.
"Westeht" unit offers advantages. For future requirements of 25 to 50 kV in projection receivers, the E.H.T. mains transformer and valve rectifier system becomes very bulky and heavy if adequately insulated, and it now seems very probable that it will be replaced

Physical Society's Exhibition

New Testing and Measuring Equipment

Abstract

A^{\top} the third post-war Exhibition of the Physical Society, held in London from 6th - 9th April, the application of radio technique to non-communication purposes was prominent, as was the use of radar methods in other branches of physics. Generally, there was more emphasis on research and development than on production techniques

Research Section

Examples of the travelling wave tube, which provides a new method of obtaining high amplification over a wide band at extra-high frequencies, were shown by G.E.C. and Standard Telephones. The S.T.C. tube was demonstrated under working conditions giving a 20 db gain at centimetre wavelengths.

Component parts of a miniature magnetron for the so-called Q band were displayed by Admiralty Experimental Establishments. With an external diameter of the same order as a standard receiving valve, this magnetron has a peak power output of 15 kW at a wavelength of 8 mm . An interesting demonstra-

Energy falling on the plate causes the slots to fill with the characteristic neon glow in the region of excitation. The demonstration included diffraction, change of polarization at reflection and focusing by metal lenses.

A sensitive D.C. amplifier making use of a magnetic transductor to modulate an A.C. source was shown by Ferranti. The sensitivity is greater than that obtainable from a moving-coil galvanometer and the instrument can be used under conditions of vibration which would rule out the use of a galvanometer. The principle can also be used for power control and examples of its application in this connection,
 with the gain increased by positive feedback, were demonstrated by Elliott Bros.

Methods of measurement formed a large proportion of the exhibits in the research section. The N.P.L. demonstrated the measurement of the velocity of propagation of electromagnetic waves by the frequency of resonance in a cylindrical cavity, and B.T.-H were showing a resonant cavity method of determining dielectric loss and permittivity at frequencies in the range of $8,000-10,000 \mathrm{Mc} / \mathrm{s}$.

Ferranti magnetic amplifier.
tion of the optical properties of millimetre waves was given, using as a detecting screen a copper plate with a pattern of $\frac{1}{2} \lambda$ slots in an atmosphere of neon at $150 \mathrm{~mm} / \mathrm{Hg}$.

A disc specimen of material under test is placed on the tuning piston of the cavity. The permittivity is obtained in terms of the change of resonant length of the cavity and
the dielectric loss by the change in Q at resonance.

A simple method of impedance measurement giving results better than ± 5 per cent in the frequency range $30-500 \mathrm{Mc} / \mathrm{s}$ was demonstrated by G.E.C. Research Laboratories. By using exponential capacitances in the ratio arms of the bridge a range of 1 to 100,000 ohms can be covered by a single scale The impedance is compared with a standard roo-ohm resistor and at

Cavity resonator for measurement of dielectric loss and permittivity (British ThomsonHouston).
tuning head is provided so that the susceptance of the impedance to be measured can be tuned out, if desired.

The Post Uffice Engineering Dept. exhibited a speech transmission system used in determining the optimum characteristics of hearing aids, and also a probe microphone for use in conjunction with an artificial ear. They were also showing a speech spectrum integrator for measuring the total energy in a series of half-octave bands over a timed period. The method is used to determine the characteristics of
microphones when held close to the mouth.

Apparatus for the investigation of architectural acoustics by the analysis of C.R.tube traces of reflected sound pulses was demonstrated by Standard Telephone and Cables.

Marconi's W.T Co. were showing equipment demonstrating a method of frequencymodulating a quartz crystal. The crystal itself is of special type and consists of a rectangular plate which is much larger than the electrodes and which is supported around its edges in a manner imposing a damping load. The active part of the crystal corresponds to the area covered by the electrodes and the surround bare quartz acts as a filter. By using the crystal in a special circuit a deviation of 1 part in 1,000 is possible.

Two pieces of apparatus designed to reduce the labour of routine measurements and applied to widely different subjects were noted. One was the polar diagram equipment for measuring centimetre aerials shown by Cossor, and the other a B / H curve tracer for magnetic materials by B.T.-H. Both depend upon the application of servo mechanisms and produce large-scale pen tracings on paper.

Many adaptations of radio and radar methods to other branches of
physical science were noted. G.E.C. in conjunction with the Radio Therapeutic Research Unit of the

Impedance bridge giving, on a single scale, constant accuracy over the range 1 to 100,000 ohms at frequencies from 30 to $500 \mathrm{Mc} / \mathrm{s}$ (G.E.C. Research Labs).

Medical Research Council had in operation a linear accelerator employing a pulsed magnetron in conjunction with a wave guide and iris-loaded cylindrical resonator. The latter is virtually a succession of resonant cavities in which adjacent cells are designed to oscillate with a 180° phase difference when excited at the correct frequency. Electrons injected at one end of the resonator at a critical velocity are
further accelerated to speeds approaching the velocity of light and energies of the order of 5 to 20 Mev . The difficulty of obtaining stable operation of the magnetron under the varying load (during the buildup period of the pulse) presented by the high Q of the resonator elements has been solved by careful design of the wave guide coupling system. which inclucles a stabilizing water load.

Radar technique has been applied by the Post Office to the location of faults in overhead lines by the examination of pulse reflections displayed on a C.R. tube. The equipment was shown in operation on an artificial line and photographs of characteristic responses demonstrated the effect of various faults.
B.T.-H demonstrated a relative velocity indicator operating on the radio Doppler principle which was employed in the proximity fuse. Indication was given on a meter calibrated directly in m.p.h.

Electronic counting methods have come into prominence recently in connection with nuclear research and an elaborate pulse amplitude analyser and counter for sorting the various responses of an ionisation chamber was shown in operation by the Atomic Energy Research Establishment Electronics Group.

Trade Section

Valve . Voltmeters. - The valvevoltmeter originally designed for A.F. and R.F. measurements is now being used as the nucleus of multirange measuring instruments and other comprehensive test sets. Its high input impedance is particularly valuable for many D.C. voltage

Pulsed magnetron (left) and wave-guide system energizing multi-cell cylindrical resonator for accelerating electrons in the range 5 to 20 Mev (G.E.C. Research Labs).
measu'rements for often a fraction of a milliamp load will lead to an ambiguous voltage reading.

Avo use a valve-millivoltmeter as the basis for their multi-range Electronic Tester and by so doing achieve a D.C. voltmeter resistance of it $M \Omega$ on all ranges up to $\mathrm{t}, 000$ volts. A multiplier raises this to no $M \Omega$ and increases all ranges ten times. This instrument provides no fewer than 49 ranges of volts, current, power, resistance, capacitance, and R.F. voltage up to $200 \mathrm{Mc} / \mathrm{s}$.

A valve-voltmeter is again the nucleus of the Micovac multi-range tester made by Electronic Instruments. As a D.C. or A.C. voltmeter the resistance is $I M \Omega$ per volt. This meter embodies a V.H.F. probe and R.F. voltage measurements can be made up to $200 \mathrm{Mc} / \mathrm{s}$.

Metropolitan-Vickers adopt a similar principle in their multirange test set, the valve-voltmeter being usable for R.F. measurements, while on the A.C. and D.C.

Physical Society's Exhibition-

ranges the resistance is $4 \mathrm{k} \Omega$ per volt. A wide-range volt-ohmmeter of the same basic style having an A.F.-R.F. range of $50 \mathrm{c} / \mathrm{s}$ to
minent place among test equipment, appears to have retreated into the background this year and to have given way for more specialized types of R.F. and A.F. generators.

Furzehill

Rediffusion valve kilo-voltmeter Type M36 for measuring R.F. up to 15 kV and to $30 \mathrm{Mc} / \mathrm{s}$.

Laboratories showed a portable frequency standard using a quartz crystal oscillator on 1 Mc / s with which is synchronized a series of multivibrators giving outputs of $\mathrm{Ikc} / \mathrm{s}$, io kc / s and 100 kc / s respectively. All these generators are very rich jo Mc/s, and using a detachatble probe unit, was shown by Sifam.

A valve kilo-voltmeter has been designed by Rediffusion for use in research and development laboratories and for R.F. measurements on industrial electronic apparatus. By means of three auxiliary units, each covering two voltage ranges, provision is made for R.F. voltage measurements up to 15 kV and to $30 \mathrm{Mc} / \mathrm{s}$.

A departure from customary practice was noticed in the Marconi Instruments Type TF899 valve

Valve milli-voltmeter Type TF899 made by Marconi Instruments.
milli-voltmeter where a triode mounted in a probe is used in place of the more usual diode. It is usable up to $100 \mathrm{Mc} / \mathrm{s}$ and in three ranges gives R.F. voltage measurements up to 200 mV .

Signal Generators.-The fámiliar standard signal generator, which at one time occupied a very pro-
in harmonics and together provide a wide range of check frequencies of high accuracy extending up to and beyond $50 \mathrm{Mc} / \mathrm{s}$.

Several interesting A.F. generators have made their appearance, one by Elliott Bros. being a high-power precision generator covering a range of 40 to $2,500 \mathrm{c} / \mathrm{s}$ with a short-period stability of one part in 20,000 . A voltage or current output up to a maximum of 75 VA is available, according to the nature of the test work to be undertaken.

For general A.F. testing Dawe Instruments have developed a range of resistance-tuned oscillators covering $0.1 \mathrm{c} / \mathrm{s}$ to $5 \mathrm{Mc} / \mathrm{s}$. The lowest range is covered by the Type 4000 which extends from $0.1 \mathrm{c} / \mathrm{s}$ to $\mathrm{I}, 000 \mathrm{c} / \mathrm{s}$ in four bands. It gives 100 mW output into 10,000 ohms, or 50 mW into 5,000 ohms and is balanced to tarth.

An A.F. oscillator, described as Type F, for modulating R.F. signal generators was shown by Advance Components. It covers 50 to $10,000 \mathrm{c} / \mathrm{s}$ and gives I watt output which is maintained at $\pm 2 \mathrm{db}$. The total harmonic and noise content

[^2]

Type 400C A.F. generator covering 0.1 to $1,000 \mathrm{c} / \mathrm{s}$ made by Dawe. This is one of a range extending to $5 \mathrm{Mc} / \mathrm{s}$.
is less than 3 per cent of the full output when measured at $\mathrm{r}, 000 \mathrm{c} / \mathrm{s}$.

Another variable frequency generator, in this case covering $25 \mathrm{c} / \mathrm{s}$ to roo kc/s and using an R-C oscillator circuit, was shown by Pye. The output can be monitored and it provides 20 volts into a 6,000 ohms line or I.O volt into 600 ohms as required. The total harmonic content is less than I per cent of the maximum output. All these oscillators are mains operated and the majority are self-contained, being reasonably compact and portable.

Bridges.-A compact and portable bridge for carrying out a wide range of measurements on components of various kinds was shown by Wayne-Kerr. Described as the Model Bior Components Bridges it has the advantage that in most cases components can be measured
in situ. It covers resistance from 2Ω to $500 \mathrm{M} \Omega$, capacitance from 2 pF to $500 \mu \mathrm{~F}$, inductance from $0.1 \mu \mathrm{H}$ to $5,000 \mathrm{H}$, all with an accuracy of less than ± 2 per cent. It also covers leakage measurements on electrolytics, power factor and Q values.

Another very versatile bridge for
measurements at radio frequency is the General Purpose Bridge, Type 940162, shown by Pye. Made in three complementary units it provides inductance measurements from Io to $20,000 \mu \mathrm{H}$, capacitance from to to 950 pF and resistance from 10 to $20,000 \Omega$. Components can be measured whose reactance changes from capacitative to inductance reactance according to the applied frequency and the critical frequency determined if within the range of the bridge oscillator. This covers $100 \mathrm{kc} / \mathrm{s}$ to $5 \mathrm{Mc} / \mathrm{s}$ with an accuracy of $\pm \mathrm{I}$ per cent.

For laboratory use Sullivan were showing an improved version of their direct-reading Universal Precision Inductance Bridge having an overall accuracy better than ± 0.1 per cent and covering capacitance from $\mathrm{I} \mu \mathrm{H}$ to 100 H and with attachments provides for the measurement of capacitance and inductance with superimposed D.C. at the same high order of accuracy.

A new item of measuring equipment shown also by Sullivan was a bridge for resistance measurements in either absolute or international units.

There were several self-contained

Sullivan A.F. power oscillator for energizing a bridge.
wheatstone bridges incorporating the galvo and the battery, Pye in particular showing this style of apparatus.

A tendency towards the production of special power sources for energizing bridges is exemplified by the Sullivan Fixed-Frequency Oscillator. With an output of 1 W at three different impedance values, it can be supplied for frequencies of $800,1,000$ or $1,600 \mathrm{c} / \mathrm{s}$.

Miscellaneous Measuring Apparatus. - A heterodyne wavemeter covering $100 \mathrm{kc} / \mathrm{s}$ to $20 \mathrm{Mc} / \mathrm{s}$ in
right switched ranges was seen on the Plessey stand. The output

Pye General Purpose R.F. Bridge, including oscillator, bridge and detector units. Normally they would be assembled side-by-side.
from the R.F. oscillator is substantially pure in order to avoid ambiguity. Measurements are made by injecting the signal into the wavemeter and setting the internal circuits to resonance by the zerobeat method using headphones. It is essentially a precision instrument and the accurace is better than ± 0.2 per cent throughout. A crystal - controlled oscillator giving an output at either no kc / s or $100 \mathrm{kc} / \mathrm{s}$ and rich in harmonics is included for checking the calibration. Further examples of laboratory-type heterodyne wavemeters were included in Sullivan's exhibit.

Anotier n ew piece of apparatus introduced only recently by Plessey is an Impedance Meter for measurements on A.F. transformers and chokes. It operates on the prin-
ciple of equalizing the voltage drop across a known resistance and the unknown, both being supplied from a source of A.C. at $400 \mathrm{c} / \mathrm{s}$. Apart from a phase angle control only one .other control is used and this is attached to a scale giving direct readings of impedance in ohms. The impedance range is $2-124 \mathrm{k}!$.

Some H.F. and V.H.F. bridges designed especially for impedance measurements on lines and aerials were shown by Wayne-Kerr. The former covered a range of $15 \mathrm{kc} / \mathrm{s}$ to $5 \mathrm{Mc} / \mathrm{s}$, while the latter extended from I Mc/s to $100 \mathrm{Mc} / \mathrm{s}$.

The pointer-type instruments which form the basis of so much test gear follow established lines in the main. There is a tendency towards the adoption of hermetic sealing and Ferranti exhibited a number in operation while immersed in boiling water.

Sifan have a model with a nominally logarithmic scale obtained through the use of a nonlinear shunt, which acts also as an overload protector. An unusual instrument was shown by NalderLipman; this is a meter with a 220° pointer movement. It is available in various sizes from $2 \frac{1}{2}$ in to $12 i n$.

Components.-The Berco range of vitreous resistors has been extended by the addition of the Z type. These are of $42-375 \mathrm{~W}$ at $380^{\circ} \mathrm{C}$ rating and are in values of $0.15-32.2 \Omega$; they consist of a corrugated resistance strip wound on a ceramic tube. The standard type is now made with a blade-type fitting and the resistors are all of the same diameter but vary in length according to the value.

A power variable resistor in values up to $15 \mathrm{k} \Omega$ is available in ratings

Transformer and choke impedance measuring meter, shown by Plessey.
of 25-300 W. It has a detachable $\frac{1}{4}$-in shaft so that the units can readily be ganged.

Wire-wound attenuators with an L.F. accuracy of $\pm 0.1 \mathrm{db}$ were

Physical Society's Exhibition-

shown by Langham Thompson and carbon types accurate within $\pm 0.25 \mathrm{db}$. At $15 \mathrm{Mc} / \mathrm{s}$ and $30 \mathrm{Mc} / \mathrm{s}$, the changes of accuracy are respectively claimed to be 0.25 db and 0.2 db . Sullivan were also showing attenuators of the T and H types, while Ferranti had miniature enclosed wire-wound variable resistors of precision design.

Special high-value resistors were shown by the G.E.C. Research

Sifam log-scale milliammeter; 125 mA full-scale ; io mA half-scale.

Laboratories. Using as a conducting medium a toluene/alcohol/ picric acid mixture resistors of lowtemperature coefficient and a value of $10^{10}-10^{13} \Omega$ have been developed.

Relatively few new capacitor types were on view, but T.C.C. had a range of large-capacitance models intended for photo-flash equipnient. Values of $14 \mu \mathrm{~F}$ at 2.5 kV intermittent rating are typical. This firm had also a range of components with plastic film dielectric for which exceptionally low leakage is claimed as well as a stable capacitance with time, low-power factor and lowdielectric hysteresis.

An unusual variable capacitor was shown by Labgear. A range of $5-25 \mathrm{pF}$ is obtained by varying the separation of two circular discs by means of a micrometer-the capacitance change being ipF per , 0 graduations of the barrel.

T.C.C. Micadisc lead-through capacitor for radio-heaters, CE 70 B $30-\mu \mathrm{F}, \quad 15-\mathrm{V}$ electrolytic, and midget silvered-mica by-pass capacitors.

A range of thermally compensated mutual-inductance standards covering $10 \mu \mathrm{II}$ to o.or H was shown by Sullivan.

Relays were shown by many firms and miniature types included the Electro Methods Type MIN which measures only $\frac{5}{8} \operatorname{in} \times \frac{3}{4} \mathrm{in} \times \frac{7}{16}$ in and weighs itoz. There are two coils for series-parallel connection, and two models are available having coils of 100 or 350Ω. With the latter in series connection the operating current is only $75 \mu \mathrm{~A}$.

A wide range of centimetre-wave components was exhibited on the Plessey stand. They included piston attenuators and wavemeters for cm-wave operation as well as crystal units, adjustable probes and connectors.

Valves.-A number of specialpurpose valves shown by Ediswan included the $6 \mathrm{~F}_{32}$ and $6 \mathrm{~F}_{33}$. They are screened pentodes with sharp cut-off suppressor-grid characteristics intended for use in modulator, reactance and timing circuits. Cutoff is at about -8 V for the suppressor grid. In the case of the 6F33 positive drive on the suppressor grid is permissible, since a built-in diode is tied to it to prevent the grid from locking positive.

For use in stabilizer circuits there are the ${ }_{29} C_{I}$, a diode with a directly - heated tungsten filament, and the 12 Er . The latter is a tetrode for series or shunt control

Labgear sub-standard variable capacitor with part of the screening removed.
in stabilized power units. With a maximum rating of 35 W dissipation, the operating limits are 700 V anode potential or 300 mA cathode current, while it will withstand 300 V between heater and cathode.

A neon tube designed for use as a voltage reference-level tube was shown by Mullard. It is the 85 Ar with a burning voltage of 85.5 V and a short-term stability of 0.2 per cent; the variation between tubes is limited to 0.5 V . The well-known EF fo range of valves was shown, as
well as the sub-miniature hearingaid types.

Standard Telephones exhibited a

Plessey electron microscope.
number of gas-filled voltage-regulator valves which included subminiature types. This firm had on view a new selenium metal rectifier which is designed for use at radio frequencies up to $5 \mathrm{Mc} / \mathrm{s}$, as well as their well-known range of power frequency types. Westinghouse featured the 36EHT copper-oxide rectifiers for low-current high-voltage rectification.

The M.-O. Valve Company was showing a large number of types of all-glass construction, among which the ror-series is interesting in having heaters consuming only o.IA. The range includes a triode-hexode, Xior, which is claimed to be useful up to $100 \mathrm{Mc} / \mathrm{s}$. Sub-miniature pentodes with $25-\mathrm{mA}$ filaments for hearing aids were shown.

Ferranti showed miniature highvoltage rectifiers as well as coldcathode tubes and electrometer valves.

Cathode-ray tubes for oscilloscope and radar applications were shown by Ediswan and Cinema Television. Among the former were flat-ended types and some specimens that had
special scales marked directly on the glass.

Metropolitan-Vickers had a new electron microsdope giving a magnification continuously variable from 1,000 to 100,000 times, and Plessey were showing an experimental model with a magnification of 20,000 diameters and a resolving power of roo \AA. It operates at 50 kV .

Materials.-A series of non-metallic ferrite core materials under the trade name of "Ferroxcube" was shown in various applications by Mullard Wireless Service Company. This material, which has high resistivity and low eddy-current loss, is particularly useful for filter inductances used in the range between audio and radio frequencies. A carrier filter coil in a circuit resonant at $60 \mathrm{kc} / \mathrm{s}$ was demonstrated to have the remarkably high Q of 600 .

The alloy known as "Permendur," made by Telegraph Construc-
tion and Maintenance, has a saturation induction of over 20,000 gauss and is used for the pole pieces of high-grade permanent-magnet loudspeakers. T.C.M. were also showing a comprehensive range of cables including types with expanded Telcothene insulation (capacitance 6 to $8 \mathrm{pF} / \mathrm{ft}$) and anti-microphonic cables in which spurious voltages generated by flexing are dissipated by a conducting surface applied to the insulation where it makes contact with the outer metal braiding.

A new glass, suitable for a jointing technique analogous to soldering, was shown by B.T.-H. and should solve many awkward glassblowing problems.

Synthetic sapphire, formerly produced in the wastefully shaped " boules," is now being extruded in rod form from a special furnace developed by G.E.C. Research Laboratories.

Microwave Equipment

New Plessey Multi-Channel System

DEVELOPED for use where land-lines are impracticable, the Plessey microwave multi-channel radio communication system provides eight duplex speech channels. The equipment operates on the same basic principles as the Army No. ro set ${ }^{1}$ and similarly uses pulsewidth modulation ${ }^{2}$ and a paraboloid mirror at a wavelength of some 6 cm . The circuits used, however, differ considerably and of particular interest is the adoption of a common aerial system for transmission and reception.

The paraboloid reflector is fed from the rear by a waveguide projecting through the centre of the mirror. A dished reflector-plate is mounted in front of the wave-

[^3]guide mouth with its convex side facing it. The wave emerging from the guide is reflected back to the mirror by this plate and is then again reflected forwards to form the main radiated beam of some 4° in width. On reception the reverse action takes place.

The radiating system is con-
nected to the equipment proper through a circular waveguide which can be of the flexible type. Separation of the transmitted and received waves is effected at the waveguide termination.

The principle depends on the use of polarization at 90° for send and receive; thus, if one wave is vertically polarized the other is horizontal. The waveguide, which carries both waves, terminates in a Y-branch in the two arms of which are included polarization filters. Within narrow limits these pass only waves of particular polarization. Be yond the filters the guides are terminated in resonant sections and coupled by probes to short lengths of coaxial lines for the connections to the equipment.

Velocity-modulated valves are used both for the transmitter and the receiver oscillators. The former develops some 400 mW peak power and is pulse modulated. The latter is operating continuously and kept to its correct frequency by an A.F.C. system operating on the received signal. A crystal mixer is used with a 6 -stage wideband I.F. amplifier.

The pulse system comprises a $9-\mathrm{kc} / \mathrm{s}$ oscillator arranged to produce an 8 -phase output which, in turn, controls a set of eight multi vibrator pulse generators.

At a recent trial the equipment was installed, one on the roof of the telephone exchange at Hain ault, Essex, and the other on the top floor of the Grandstand, at Epsom, Surrey, the distance being 25 miles. Eight duplex speech channels of excellent quality were obtained and cross-talk appeared to be quite absent. Some back ground hiss was evident but not to a degree which, in any way, im paired the intelligibility of speech.

Each channel has a response up to $4,000 \mathrm{c} / \mathrm{s}$ and can be used with ordinary terminal equipment to carry several teleprinter channels if required. Ringing facilities are included. The system allows for intermediate relay stations.

WORLD OF WIRELESS

P.T. Increases * Extending Television * B.S.R.A. Conference "Gee" Mechanics Wanted

PURCHASE TAX

CHANGES in the purchase tax chargeable on radio equipment were announced by the Chancellor of the Exchequer in his budget speech.

Radio receivers-whether of the domestic type, or for use in cars-radio-gramophones, television sets, kits of parts and valves are now chargeable at $66 \frac{2}{3}$ per cent on the wholesale price instead of 50 per cent. Batteries and accumulators, other than dry batteries of not more than 6 volts, are still chargeable at $33 \frac{1}{3}$ per cent. Hearing-aid batteries are exempt.

Loudspeakers, cabinets, transformers, resistances, etc., " when not sold as part of a transaction involving a chargeable receiver,' remain untaxed, as do amplifiers, transmitters and hearing-aid valves.

The proposed inereases will be the second in a few months. In the 1947 Emergency Budget the tax was increased from $33 \frac{1}{3}$ per cent to 50 per cent. The industry rightly complains that the increases will have an adverse effect on it, especially as radio is a rapiclly developing industry in which, when once ground is lost it is difficult to regain. Noreover, success in the export market depends on an adequate home market from the point of view of both research and production.

MIDLAND TELEVISION

WORK on the construction of the first Midland television station was begun recently at Sutton Coldfield, near Birmingham, but no date can yet be given as to when it will be brought into service, neither has it been decided on what frequencies the sound and vision transmitters will operate. The $35-\mathrm{kW}$ vision transmitter is being manufactured by E.M.I. and the $12-\mathrm{kW}$ sound transmitter by Marconi's.

The station will transmit the same programme as that radiated from Alexandra Palace and it is the responsibility of the G.P.O. to provide the link between the two stations. In order that both cable and radio can be used experimentally in the initial stages a co-axial cable has been laid and, as already announced, the G.E.C. is erecting radio relay stations.

The radio link includes four relay stations situated at Harrow Weald,

Dunstable, Blackdown Hill near Charwelton, and Rowley Regis, and terminal stations at the Museum Telephone Exchange, Lonclon, W.i, and at Telephone House, Birmingham. The programmes will be piped between the terminal stations and the main transmitters.

AERIALS

THE importance of an efficient aerial has often been stressed in Wiveless World and it is gratifying to find that the industry is recognizing this. The Radio Component Manufacturers' Federation has formed a Panel to consider the classification of broadcast receiving aerials. It is not proposed to produce rigid specifications for standardization but merely a classification by types specifying technical requirements.

The results of tests undertaken by manufacturers in various parts of the country are being collated and will form the basis of a report to be circulated to the B.B.C., G.P.O., and the industry.

"RICE-GRAIN " VALVES are being developed in the laboratory of the U.S. Bureau of Standards. One is shown here in comparison with a miniature valve, a hearing-aid valve and an earlier "sub-miniature " type.

TELEVISION AT B.I.F.

FXHIBITORS of television sets A at the British Industries Fair, at Olympia, will be the first to use the special receiving aerial which is being erected by the Radio Industry Council on the roof of the exhibition building.

Some sixty or seventy manufacturers of radio equipment and accessories are exhibiting in the radio and scientific sections of the Fair at Olympia. In addition a number have taken stands in the engineering section at Birmingham.

The B.I.F. will be held simultaneously in London and Birmingham from May 3 rd to 14 th. Admission is by Trade Buyers' badge obtainable at the entrance price 2s 6 d . The public will be admitted to Olympia on May 5 th, 8th and i2th only.

RECORDING CONFERENCE

 D ISC, film and magnetic-tape recording and reproducing will be discussed and demonstrated at a conference being organized by the British Sound Recording Association. The conference, which will be preceded by the annual general meeting, will be held at the St. Ermin's Hotel, Caxton Street, London, S.W.I, on May 29th and 3oth.The A.G.M. begins at 2.15, and the conference opens at 4.30 with a paper on disc recording and reproduction. The annual dinner will be held at 7.55. The conference will continue on the second day with sessions at II. 0 , and 2.30 on magnetic recording and sound on film, respectively. Demonstrations will be given at each session and throughout the conference recording and reproducing equipment will be on show. Admission is by ticket only.

Particulars are available from the hon. secretary, R. W. Lowden, "'Wayford,"' Napoleon Avenue, Farnborough, Hants.

"BUSINESS RADIO"

THE fifteen frequencies in the band between 67 and $87 \mathrm{Mc} / \mathrm{s}$ which, as stated last month, were to be made available for the use of the Press in the G.P.O.'s "Business Radio" scheme, have now been allocated.

The allocations have been made by the Joint Telecommunications

Committee of the Newspaper Society and the Newspaper Proprietors' Association and it now remains for the individual publishers to apply to the P.M.G. for licences. The allocations cover eighty provincial papers, eight nationals and two news agencies.

Owing to the limited range of the equipment permitted to be employed it has been possible to allocate the same frequency for use in different parts of the country.

Courtesy"La reléviston Française."
PUT TO THE TEST.-A tropicalized loudspeaker was suspended in a tank of water during the recent Paris radio components exhibition.

MECHANICS WANTED

WITH the completion of the Scottish "Gee" chain, which is expected to come into operational use during this summer, the Ministry of Civil Aviation will require additional radio mechanics to maintain the equipment. The stations are being erected at Great Dunn Fiell, Lowther Hill, Craigowl Hill and Ru Stafnish.

Applications are invited from men who have had practical experience in the maintenance of radio and/or radar equipment. Successful applicants are given four weeks training at the M.C.A. Siguals Training Establishment at Bletchley, Bucks, and start as Radio Mechanics, Grade II, at $£ 5$ I5s a week.

Radio Mechanics are also required for the maintenance of radio and radar equipment in other parts of the country.

INVES TIG ATING PROPAGATION

ANOMALOUS propagation, or 'super-refraction," of radio waves is being investigated by physicists from the Telecommunications Research Establishment, who have gone to Malta where the necessary atmospheric conditions exist from about May to September.

Test flights will be made by two R.A.F. aircraft in order to measure the strength of signals at various ranges and heights. Meteorological observations will also be made as a result of which it is hoped to ascertain the relationship between the meteorological and propagational properties.

PERSONALITIES

E. F. Guest, technical development officer of H. J. Enthoven and Sons, manufacturers of "Superspeed" solder, has been appointed to represent the company on the Inter-Service Radio Components Standardization Committee of the Ministry of Supply.
E. L. A. Mathias, O.IB.E., who has been chief engineer and general manager of the Marconi Radio Telegraph Company of Egypt since its formation twenty one years ago, has beern appointed managing director. Prior to geing to Egypt he was with Marconi's at Chelmsford for fourteen years. He is succeeded as general manager. by P. T. Simpson.
J. W. Ryde, a senior physicist at the G.E.C. Research Laboratories, Wembtey, has been elected a Fellow of the Royal Society. He has been a member of the scientific staff of the Laboratories since their formation twenty-nine years ago. His researches during the recent war were concerned with the attenuation and scattering of centimetric radar waves in various meteorslogical conditions.
A. Shore, A.M.I.E.E., has retired from Marconi's after 36 years' service. He joined the company's test department in 1912, was at one time assistant to the principal of the Marconi School and has lately been in charge of the section producing technical literature.
Dr. R. C. G. Williams, who was recently appointed chief engineer of 1'hilips Electrical, has been elected a Fellow of the American Institute of Electrical Engineers. He was for two years executive engincer to the North American Philips company.

OBITUARY

We regret to record the death of Frank E. Butler, the American radio pioneer and associate of L)r. Lee de Forest, whe died recently at his home in Toledo, Ohio, at the age of 70 .
Piotr Nikolayevich Rybkin, who was an assistant of Popov, the Russian radio scientist, died in Kronstadt in January. For his services to the U.S.S.R. he was awarded the Order of Lenin and the Order of the Red Star.

IN BRIEF

Receiving Licences.-The number of licences in force in Great Britain and Northern Ireland at the end of February was approximately 11,233,500, including 43,500 television licences.

Exporting Television.-The Radio Industry Council is taking active steps to promote the export of television equipment and to this end transmitting gear is being installed in Copenhagen
in order to demonstrate receivers during the British Exhibition to be held there in September
U.S. Television.-The F.C.C. announces that at the end of 1947 there were seventeen television stations operating in the United States. Permission had been granted for a further 55 to be constructed and applications for another 84 were pending. The industry produced 178,571 television receivers last year, which was about one per cent of its total output of sets.
F.M. in U.S.-According to figures recently published in the U.S.A. there were, at the end of the year, 356 F.M. stations in operation. The production of F.M. receivers last year accounted for seven per cent of the industry's set output. The figures were: A.M. sets. 16,342,002; F.M., 1,175,104; television, $1 ; 8,57$ I.
Teaching by Example.-All the vehicles used by our Publishers, the Associated Iliffe Press, and our Printers, the Cornwall Press, which, with staf cars, number seventy, have been fitted with interference suppressors, in conformity with the campaign launcherd by the Radio Industry Council to impress upon motor users the need for suppressing television interference.
German Amateurs.-Although German amateurs are not yet licensed to operate, the Deutscher Amateur Radio Club has restarted publishing its journal $C Q$. The first number contains a message from R. G. Shears, organizing secretary of amateur radio -in the British Zone. The secretary of D.A.R.C. is Hans Haberl, Ifolbeinstrasse, 27, Munich

J. W. Ryde, of G.E.C. Research Laboratories becomes a F.R.S.

Radio Courses.-Atwong the courses available at the Cardiff Wireless College (3. Park Grove, Cardiff) is one for the City and Guilds amateur transmitters' examination. In addition to this evening course the College conducts fulltime and postal courses for the「.M.G.'s certificates in wireless telegraphy, civil aircraft radio officers' certificate, rarlio servicing and City and Guilds examinations.
Aircraft Radio.-For the purpose of assisting aircraft owners, manufacturers and maintenance organizations in obtaining approval of radio installations the Ministry of Civil Aviation has appointed Aircraft Radio Surveyors at

World of Wireless-

Croydon, Liverpool (Speke) and Prestwick airports, and also in Cairo. Applications for approval should be sent to the Director of Telecommunications (Tels, : 7 (b)), M.C.A., Cornwall House, Stamford Street, London, S.E.i.
European Broadcasting Stations.According to figures issued by the International Broadcasting Organization there were 344 medium- and longwave broadcasting stations operating in Europe at the end of last year.

India's New Stations.-Four new broadcasting stations have been opened in India during the past few months, bringing the number of medium-wave stations operated by All-India Radio to nine. The new stations are: Jullunder $(1,333 \mathrm{kc} / \mathrm{s})$, Cuttack $(1,355 \mathrm{kc} / \mathrm{s})$, Patna ($1,131 \mathrm{kc} / \mathrm{s}$) and Amritsar ($\mathrm{I}, 305$ kc / s). There is also one medium-wave station in each of the following four Indian States: Baroda, Mysore, Travancore and Hyderabad.
"Trader Year Book."-The 1948 edition of this year book for the radio and electrical trades includes approximately 10,000 entries in its three directory sections giving trade addresses of manufacturers, proprietary names of products and a buyers' guide to makers of equipment grouped under some 200 headings. In addition, such information as the mains voltages throughout this country and in many towns overseas, condensed specifications of receivers introduced for the 1947-48 season, and a directory of trade associations is given The year book is obtainable from the Trader Publishing Company, Dorset House, Stamford Street, London, S.E.I, price los 6 d post free.
Meteorology and Radio.-Under the title "Meteorological Factors in RadioWave Propagation," the Physical Society has issued a report on the conference held by the Physical and the Royal Meteorological Societies in April, 1946.: The volume is obtainable from the Physical Society, Lowther Gardens, London, S.W.7, price 24 s .
British Standards.-A synopsis of the r,400 British Standards now current is contained in the 1947 Year Book of the British Standards Institution which has just been published. The 324 -page volume, which includes a subject index and lists of members of the councils and industrial committees, is obtainable from the B.S.I., 24, Victoria Street, London, S.W.I, price 3 s 6 d .
A Guide to the new electricity organization has been produced hy our associated journal Electrical Review. This directory of the British Electricity Authority gives brief biographies of the officials. "Electricity Supply," as it is called, is obtainable, price 2 s (postage 2 d), from Electrical Review, Ltd., Dorset House, Stamford Street, London, S.E.I.
F.B.I. Register.-We are informerl that further supplies of the F.B.I. Register of British Manufacturers, the first post-war edition of which was recently issued, are available for the home and overseas markets. It is published jointly, for the Federation of British Industries, by Kelly's Directories and Iliffe and Sons, price 2 gns.

OUR COVER

The subject for this month's cover illustration is the V.H.F. frequency-modulated communication equipment recently installed by G.E.C. for the Madras City Police. The transmitter has a power of 100 watts.

INDUSTRIAL NEWS

Philips sound-reproducing equipment is to be inade available on a rental/ maintenance basis in addition to the normal outright sale method. The distribution of the equipment will be undertaken by the Modern Telephone Co., of 139, Tottenham Court Road, London, W.I, through appointed S.R.E. (sound-reproducing equipment) dealers, who will receive it share of the rental and may assist in the installation and maintenance.
Pye.-To mark the soth amiversary of the founding of the Pye Company the directors are presenting $£ 5,000$ worth of television receivers to its workers. Two television sets are also being presented to each of the colleges at Cambridge University.

Taylor Electrical Instruments announce that their test equipment will in future be sold under the trade name of Windsor instead of Taylor in order to enable it to be exported to markets hitherto closed because of the name conflicting with that of the Taylor Instrument Company of America.
Raw Materials.-Details of all raw materials controllerl by the Board of Trade and the Ministry of Supply, together with the types of control at present operating and the addresses at which enquiries may be made, are given in the revised edition of "Raw IIaterials Guide," published by H.M. Stationery Office, price is 6d.

Marconi V.H.F. radiotelephone equipment has been installed at Douglas, lsle of Man, and on Merseyside for use in conjunction with radar for the control of shipping.
R.C.A. in Britain.-Arrangements have been made for enquiries regarding the engineering activities and products of the Radio Corporation of America to be dealt with in Great Britain by the Engineering Division of R.C.A. Photophone, Ltd. The address is 43, Berkeley Square, London, W.i.
E.M.A.-The first of a series of dinner meetings arranged by the Electronic Manufacturers' Association was held on April 2oth. The address of E.M.A. is now 83, Pall Mall, London, S.W.r.

Partridge Transformers, Ltd., of 76-78, Petty France, London, S.W.I, has moved to Peckford Place, Brixton Road, London, S.W.g. (Tel.: Brixton 6506.)

United Insulator Company no longer has a factory at Laystall Street, London, E.C.I. All communications should now be sent to Oakcroft Road, Tolworth, Surbiton, Surrey. (Tel. Elmbridge 524I.)

British Electronic Products.-The development and engineering sections of British Electronic Products, Ltd., of Moxley Road, Bilston, Staff's, have been transferred to Brereton Road, Rugeley, Staffs. (Tel.: Rugeley 130.)

MEETINGS

Institution of Electrical Engineers

Radio Section.-"Carrier Frequency Shift Telegraphy," by R. Ruddlesden, M.Eng., E. Forster and Z. Jelonek, and "Some Developments in Communication Point-to-Point Radiotelegraphy," by J. A. Smale, B.Sc., on May inth, at the I.E.E., Savoy Place, London, W.C.2, at 5.30 .

Cambridge Radio , Group.-"Tropo spheric Propagation," by H. G. Booker, M.A., Ph.D., on April 27th, at the Cavendish Laboratory, at 8.15
"Some Aspects of Gramophone Kt . production," by K. N. Hawke, B.Sc., on May 18th, at the Cambridgeshire Technical College, at 6.
Scottish Centre.-Faraday Lecture on ' Electricity and Everyman," hy P. 1 hunsheath, C.B.E., M.A., D.Sc. (Eng.), on May 2 ist, at the Training College Hall, Park Place, Dundee.
British Institution of Radio Engineers London Section.-"The Calculation of Electrode Temperatures in the Kadio Valve," by I. A. Harris, on May 13th, at the London School of Hygiene and Tropical Medicine, Keppel Street (Gower Street), London, W.C.I, at 6.

Merseyside Section.-" Factors Governing the Performance of I.F. Amplifiers," by H. Stibbe and K. G. Lockyer, on May 12th, in the Lecture Koom, Liverpool Engineering Society, 9, The Temple, 24, Dale Street, Liverpool, 2, at 6.45 .
North-Western Section.-"The Wave Analysis of the Low Frequency Potentials of the Human Body," by W. E. Boyd, M.A., M.D., on May i3th, at the College of Technology (Reynolds Hall), Sackville Street, Manchester, at 6.45-
Midland Section. - "The Acoustic Aspects of High Quality Reproduction," by J. Moir, on April 3oth, at the Technical College, The Butts, Coventry, at 6.30 .

North - Eastern Section. -" Supervisory Control," by L. G. Brough, on May 12 th, at the Neville Hall, Westgate Road, Newcastle-on-Tyne, at 6 .

Institution of Electronics

North-West Branch.--"The Application of Electronics to Vibration Research." by D. M. Corke, on April 30th, at the Reynolds Hall, College of Technology, Manchester, at 6.30.

Radio Society of Great Britain

London Meeting.-"Aspects of High Quality Sound Recording," by W. S. Barrell, on May 14th, at the I.E.E., Savoy Place, Victoria Embankment, London, W.C.2, at 6.30.

Electrical Trades Union

London Meeting.-An open discussion on "Short-Wave Tuning Problems," on May 21st, in Room ir, The Friends' House, Euston Road, London, N.W.i, at 7.

CLUB NEWS is unavoidably

 held over.
Push-Pull Input Circuits

Part

5.-Cathode-coupled

By W. T. COCKING, M.I.E.E.

alternating anode currents of the two valves. If there is to be a voltage drop across R_{c} to provide an input to V_{2}, therefore, the currents cannot be equal. Con-

Fig. 23. Typical cathode-coupled circuit without bias details.
sequently, if $\mathrm{R}_{a 1}=\mathrm{R}_{a 2}$, and $\mathrm{R}_{1}=$ R_{2}, the outputs E_{12} and E_{32} cannot be equal in magnitude. Equal output voltages demand unequal values of $R_{a 1}$ and $R_{a 2}$.

If $\mathrm{R}_{n 1}$ and $\mathrm{R}_{a 2}$ are nearly equal, and the currents are nearly equal also, their difference is small. Consequently the value of R_{c} must be large. When the currents are nearly equal the grid-cathode voltages of the two valves will be nearly equal also, assuming similar valves. Therefore, the cathodeearth voltage will be nearly the same as the grid-cathode voltage of V_{1} and each will be nearly one-half of the input voltage E_{AB}.

Now it will be clear that although the alternating anode currents are in opposite phase in
R_{c} the direct anode currents are additive. The first necessitates a high value for R_{c} and the second means that this high value results in a large mean cathode potential relative to earth. If the heaters are earthed, and it is usually necessary to earth them to avoid hum, there is a large voltage (100-200 V) between heater and cathode. Jt is necessary, therefore, to choose valves which will safely withstand it.

Because of this drawback, and because the amplification obtainable is about one-half of that given by other arrangements the circuit is not much used in A.F. amplifiers. All other forms of push-pull input circuit, except some of the simplest types described in Part I and of very limited application, demand the use of A.C. couplings; that is, either a transformer or coupling capacitors are needed to remove unequal steady potentials produced by the H.T. supply.

These A.C. couplings, and also decoupling circuits, make it difficult to secure balance at very low frequencies. However, conditions, are such that it is not difficult to secure adequate balance down to the lowest frequencies needed for the reproduction of music. Much lower frequencies are sometimes involved in the case of an amplifier for an oscilloscope, however, and it is here that the cathode-coupled circuit offers definite advantages. Coupling capacitors are not essential and,

Fig. 24. Cathode-coupled circuit reduced to its simplest form.

[^4]
Push-pull Input Circuits-

as a result, the response and balance can be maintained down to zero frequency.

The circuit is shown in Fig. 24 devoid of coupling capacitors and in Fig. 25 split into its component parts. In Fig. 25 (a) V_{1} is shown and is evidently a similar stage to a cathode-follower phase splitter, the cathode load comprising R_{c} in shunt with the input impedance of V_{2}. Fig. 25 (c) shows the V_{2}-stage and is a simple cathode-input amplifier (groundedgrid stage). Figs. 25 (b) and (d) show the equivalent circuits.

The circuit is analysed in Appendix V. The input impedance of V_{2} [Equ. (3)] is very low and in the limit tends to a minimum value of $\mathrm{I} / \mathrm{g}_{\mathrm{m}_{2}}$. The unbalance is given by Equ. (10) and the condition for zero unbalance by (II). It is expressed in different and more useful form in (I3) and this simple equation will repay some study. The term x $\left(=\mathrm{R}_{a 2} / v_{a 2}\right)$ represents the ratio of the coupling resistance to the anode A.C. resistance of V_{2}, and y ($=\mathrm{R}_{c} / \gamma_{a 2}$) represents the ratio of the cathode-coupling resistance to the anode A.C. resistance.

With triode valves the value of

(c)

Fig. 25. The first half of the circuit is shown at (a) with its equivalent at (b) while the second part, which has the form of a grounded-grid stage, appears at (c) with its equivalent at (d).
x is usually around 2 to 3 , but with pentodes it will usually be much less than I. Again with triodes μ_{2} will generally be about

$g_{m 2} R_{c}=99 . \quad$ If $g_{m 2}=\mathrm{ImA} / \mathrm{V}$, R_{c} must be $100 \mathrm{k} \Omega$ and the mean anode current will be about I mA per valve, so that the cathodes will be 200 V above earth. If $g_{m 2}=6 \mathrm{~mA} / \mathrm{V}, \mathrm{R}_{c}$ need not be more than $16 \mathrm{k} \Omega$ or so, but the current per valve is not likely to be less

Fig. 26. This curve shows the relation between unbalance for equal values of of $R_{a 1}$ and $R_{a 2}$ or the fraction by which $R_{a_{1}}$ must be less than $\mathrm{R}_{a 2}$ for balance as a function of $y=R_{0} / r_{a 2}$ for the condition $\mu_{2}=29$ and $\mathrm{R}_{a 2} / \boldsymbol{r}_{a 2}=2$.

(d)

20-40, but with pentodes it will be very large compared with I . With the latter valves, therefore, Equ. (13) can be reduced to

$$
\begin{aligned}
& \Delta \mathrm{R} / \mathrm{R}_{a 2} \approx \mathrm{I} /\left(\mathrm{I}+\mu_{2} y\right) \\
& \text { If } \quad \mathrm{R}_{u 1}=\mathrm{R}_{a 2}=\left(\mathrm{I} /\left(\mathrm{T}+g_{m 2} \mathrm{R}_{c}\right)\right. \\
& \text { (i.e. } \Delta \mathrm{R}=0),
\end{aligned}
$$ the unbalance from Equ. (ro) becomes $\mathrm{I}-\mathrm{I} /\left(\mathrm{I}+\mathrm{I} / g_{m 2} \mathrm{R}_{c}\right)$. For 1 per cent unbalance we get

than 7 mA , so that the cathodes will still be over 200 V above earth.

It is possible to reduce this cathode-earth voltage by replacing R_{c} by a pentode valve. ${ }^{2}$ The A.C. resistance of such a valve is much higher than its D.C. resistance, and the mean cathode potential can then be kept down to some $50-100 \mathrm{~V}$, while the effective value of R_{c} can be kept as high as O.I-I M Ω.

Pentodes, however, are less generally desirable than triodes at low frequencies because of their need for a screen supply of constant voltage relative to cathode. With triodes it is clearly desirable to make $y\left(\mathrm{r}+\mu_{2}\right) /(\mathrm{I}+x)$ as large as possible, and this means y and μ_{2} should be large and x small.

In order to secure good linearity $\mathrm{R}_{a 2}$ should normally be several times $\gamma_{a 2}$, and the practical minimum for $x=\mathrm{R}_{a 2} / r_{a 2}$ is about 2. If the frequency response must be well maintained at high frequencies a large value of $r_{a 2}$ is undesirable when $\mathrm{R}_{a 2}$ is still larger. A value of around ro- $5 \mathrm{k} \Omega$ is usually as high as is desirable. With such a value μ_{2} will be around 30 in most cases. With $x=2$, and $\mu_{2}=29$, Equ. (I3)

[^5]becomes $\quad \Delta \mathrm{R} / \mathrm{R}_{\alpha 2}=\mathrm{I} /[\mathrm{I}+\mathrm{roy}]$ and (10) becomes
$$
\mathrm{U}=\mathrm{r}-\frac{\mathrm{R}_{a \mathbf{2}}}{\mathrm{R}_{a 1}} /[\mathrm{I}+\mathrm{I} / \mathrm{IO} y]
$$

If $\mathrm{R}_{\alpha 1}=\mathrm{R}_{a 2}, \mathrm{U}=\mathrm{I} /[\mathrm{r}+\mathrm{r} 0 y]$.
The fractional change of resistance for balance and the unbalance for equal resistances are numerically the same. The curve of Fig. 26 shows how U and $\Delta \mathrm{R} / \mathrm{R}_{\alpha 2}$ vary with $y=\mathrm{R}_{c} / \gamma_{a 2}$. For I per cent unbalance it is necessary to have $y=9.9$, and this usually means R_{c} is of the order of roo-r $50 \mathrm{k} \Omega$. The voltage drop with this is excessive in most cases, and it is more usual to choose ' y around unity. The unbalance for equal values of $\mathrm{R}_{a 1}$ and $\mathrm{R}_{a 2}$ is then 12.5 per cent. This is large for A.F. amplifier applications, but may not be too great for an oscilloscope amplifier. Push-pull is here adopted more to avoid

Fig. 27. Bias can be obtained from a voltage divider R_{1}, R_{2} across the H.T. supply.
trapezium distortion than to obtain maximum undistorted output from the valves, although the increased output is naturally welcome.

With $y=\mathrm{r}, \mathrm{R}_{\mathrm{c}}$ is some ro- $15 \mathrm{k} \Omega$ in most cases, and the mean voltage drop across it can often be kept down to 100 V or so. It is important to keep the voltage drop across R_{c} small, even apart from heater-cathode insulation difficulties, because it is subtracted from the H.T. supply, and when this is fixed it reduces the undistorted output.

The problem of grid bias must now be considered. A suitable arrangement for D.C. conditions is shown in Fig. 27. The grids are returned to a voltage-divider R_{1}, R_{2} across the H.T. supply, the values being so chosen that the
voltage drop across R_{2} is less than that across R_{c} by the amount of the bias needed. The earthy-input terminal B is no longer-H.T. but the junction of R_{1} and R_{2}.

When the amplifier has to deal only with alternating voltages a capacitance can be included between A and the grid of V_{1} with a grid leak from the grid to the junction of R_{1} and R_{2}. The input can then be terminals A and 2. It is usual to shunt R_{2} by a large capacitance to prevent any hum on the H.T. line from being applied to the grids.

An alternative bias circuit is shown in Fig. 28. Here grid leaks are returned to a tapping on the cathode resistor and the bias is the voltage drop across R_{3}. As long as C_{2} is large enough in relation to R_{2} at the frequency concerned the effective value of R_{c} is $\mathrm{R}_{3}+\frac{\mathrm{R}_{2} \mathrm{R}_{4}}{\mathrm{R}_{2}+\mathrm{R}_{4}}$. However, if the frequency is low enough C_{2} introduces phase unbalance for, in effect, the grid of V_{2} is returned, not to earth, but to the tapping on the potential divider formed by R_{2} and C_{2} across R_{4}.
There is additional unbalance at all frequencies brought about by the presence of R_{1} and it is similar to that found with the cathodefollower phase splitter (Part 2). If R_{1} is kept large, however, it is unlikely to be serious.

At high frequencies stray capacitances greatly complicate the action of the circuit. The valve capacitances are shown in Fig. 29. Currents from the input flow through $\mathrm{C}_{g a 1}$ and $\mathrm{C}_{g c 1}$. The former tends to reduce the output E_{12} and cause a phase error. The latter flows through R_{c} and tends to increase the cathode - earth voltage but again causes a phase error. The effective input capacitance resulting from these currents is $\mathrm{C}_{i n}$ and composed of two parts. Since the cathode-earth voltage is nearly equal to $\mathrm{E}_{\mathrm{AB}} / 2$ the component due to $\mathrm{C}_{g=1}$ is nearly $\mathrm{C}_{g c 1} / 2$. The

Fig. 29. This diagram shows the various interelectrode capacitances of the valves, which influence the performance at high frequencies.

component due to $\mathrm{C}_{g a 1}$ is nearly $\mathrm{C}_{g a 1}\left(\mathrm{I}+\mathrm{A}_{1}\right)$ where $\mathrm{A}_{1}=\mathrm{E}_{21} / \mathrm{E}_{\mathrm{AB}}$

Fig. 28. When A.C. couplings are used bias can be obtained from a tapping on the cathode-coupling resistance.
as in Equ. (6), Appendix V. Therefore, $\quad \mathrm{C}_{i n} \approx \mathrm{C}_{g e 1} / 2+\mathrm{C}_{g n 1}$ $\left(1+A_{1}\right)$.

In $\mathrm{V}_{2}, \mathrm{C}_{b a 2}$ comes as a shunt on $\mathrm{R}_{a 2}$ and is additive to other stray capacitance shunting this resistor. $\mathrm{C}_{g c 2}$ comes as a shunt on R_{c} and is additive to the heater-cathode capacitances, not shown. The anode-cathode capacitances have similar effects on the two sides ; their effect on the balance is therefore small.

The effect of $\mathrm{C}_{g a 1}$ and $\mathrm{C}_{g a 2}$ on the balance is analogous to that obtained in the case of the cathodefollower phase splitter, and it may be expected that the order of unbalance obtained will not be dissimilar and so will be negligible at audio frequencies. Ignoring
this, the main effect of capacitance on the balance will be that shunting R_{c}, for the capacitances in

Push-pull Input Circuits-

parallel with $\mathrm{R}_{a 1}$ and $\mathrm{R}_{a 2}$ are likely to be nearly equal and so to have little effect on the balance.

In view of the fact that R_{c} is shunted by the input impedance $\mathrm{Z}_{\text {in } 2}$ of V_{2}, which is small, small values of C_{c} are unlikely to cause serious unbalance. It can be estimated from Equ. (Io) by writing $R_{c} /\left(I+j \omega C_{c} R_{c}\right)$ in place - of R_{c}.

Working out the phase unbalance on the lines of the pre--ceding articles we find it is, approximately

$$
\mathrm{R}_{a_{1}}=\frac{\mathrm{K}_{u}}{\mathrm{I}+\frac{\mathrm{I}+x}{y\left(\mathrm{I}+\mu_{2}\right)}}
$$

With triode valves the values of x and y are likely to be independent of $\mathrm{R}_{a 2}$, and so a valve with a high value of μ_{2} is advantageous in reducing the difference needed between $\mathrm{R}_{a_{1}}$ and $\mathrm{R}_{a 2}$ for balance. A high value of $y=R_{c} / r_{a 2}$ is also desirable.

With pentode valves $r_{a 2} \gg \mathrm{R}_{a 2}$
and $\mu_{2} \gg \mathrm{I}$, therefore,

$$
\begin{equation*}
\mathrm{R}_{a_{1}} \approx \frac{\mathrm{R}_{a_{2}}}{1+\frac{\mathrm{I}}{g_{m 2} \mathrm{R}_{c}}} \tag{I2}
\end{equation*}
$$

where $g_{m 2}=\mu_{2} / r_{a 2}$.
High values of $g_{m_{2}}$ and R_{c} are obviously desirable.

Writing $\mathrm{R}_{a_{1}}=\mathrm{R}_{a_{2}}-\Delta \mathrm{R}$, we get

$$
\begin{equation*}
\frac{\Delta \mathrm{R}}{\mathrm{R}_{a 2}}=\frac{\mathrm{I}}{\mathrm{I}+\frac{\nu\left(\mathrm{r}+\mu_{2}\right)}{\mathrm{I}+x}} \cdots \tag{13}
\end{equation*}
$$

Monitoring Loudspeakers

$$
\omega \mathrm{C}_{\mathrm{c}} \mathrm{R}_{\mathrm{c}} /\left[\mathrm{I}+\frac{y\left(\mathrm{I}+\mu_{2}\right)}{\mathrm{I}+x}\right]
$$

Taking $y=1, x=2, \quad \mu_{2}=29$, the unbalance is $\omega \mathrm{C}_{c} \mathrm{R}_{c} / \mathrm{II}$. If $\mathrm{R}_{c}=10 \mathrm{k} \Omega, \quad \mathrm{C}_{c}=50 \mathrm{pF} \quad$ and $f=10 \mathrm{kc} / \mathrm{s}$, the unbalance is $6.28 \times 10^{4} \times 5 \times 10^{-11} \times 10^{4} / \mathrm{II}$ $=0.00285$ and is negligibly small.

APPENDIX V

Referring to Fig. (b) the second valve can be regarded as a cathodeinput stage in which

Therefore,

$$
\begin{align*}
& i_{a 2}=\frac{e_{c c}\left(\mathrm{I}+\mu_{2}\right)}{r_{a 2}+\mathrm{R}_{a 2}} \tag{I}\\
& \frac{\mathrm{E}_{32}}{e_{c z}}=\frac{\left(\mathrm{I}+\mu_{2}\right) \mathrm{R}_{a 2}}{r_{a 2}+\mathrm{R}_{a 2}} \cdots \tag{2}\\
& Z_{i n 2}=\frac{e_{c k}}{i_{a 2}}=\frac{\gamma_{a 2}+\mathrm{R}_{a 2}}{\mathrm{I}+\mu_{2}} \tag{3}
\end{align*}
$$

The first stage is a normal amplifier with a cathode impedance

$$
\begin{equation*}
Z_{c}=\frac{R_{c} Z_{i n 2}}{\mathrm{R}_{c}+Z_{i n 2}} \tag{4}
\end{equation*}
$$

and $\quad E_{a b}=e_{p c}+i_{a 1} Z_{c}$

$$
\mu_{1} e_{a c}=i_{a 1}\left(v_{a 1}+\mathrm{R}_{a 1}+Z_{c}\right)
$$

$$
\begin{equation*}
i_{a_{1}}=\frac{\mu_{1} \mathrm{E}_{\mathrm{AB}}}{r_{a_{1}}+\mathrm{R}_{a_{1}}+Z_{c}\left(\mathrm{I}+\mu_{1}\right)} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\mathrm{E}_{21}}{\mathrm{E}_{\mathrm{AB}}}=\frac{\mu_{1} \mathrm{R}_{a_{1}}}{r_{a_{1}}+\mathrm{R}_{a_{1}+\mathrm{Z}_{c}\left(\mathrm{I}+\mu_{1}\right)}} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\frac{E_{c e}}{E_{A B}}=\frac{\mu_{1} Z_{e}}{r_{a 1}+R_{a_{I}}+Z_{c}\left(I+\mu_{1}\right)} \tag{7}
\end{equation*}
$$

$$
\frac{\mathrm{E}_{32}}{\mathrm{~F}_{\mathrm{AB}}}=\frac{\mu_{1} Z_{c}}{r_{a 1}+\mathrm{R}_{a_{1}}+Z_{\mathrm{c}}\left(\mathrm{I}+\mu_{1}\right)} \cdot \frac{\left(\mathrm{I}+\mu_{2}\right) \mathrm{R}_{a 2}}{r_{a 2}+\mathrm{R}_{a 2}}
$$

The unbalance is

$$
\begin{align*}
\mathrm{U}=\mathrm{I}+\frac{\mathrm{E}_{32}}{\mathrm{E}_{12}} & =1-\frac{\mathrm{R}_{a 2}}{\mathrm{R}_{a 1}} \cdot \frac{\left(1+\mu_{2}\right) \mathrm{Z}_{c}}{r_{a 2}+\mathrm{R}_{a 2}} \cdots \tag{9}\\
& =\mathrm{I}-\frac{\mathrm{R}_{a 2} / \mathrm{R}_{a 1}}{\mathrm{I}+\frac{r_{a 2}+\mathrm{R}_{a 2}}{\mathrm{R}_{c}\left(\mathrm{I}+\mu_{2}\right)}} \cdots \tag{IO}
\end{align*}
$$

For $\mathrm{U}=0$

$$
\begin{equation*}
\mathrm{R}_{a_{1}}=\frac{\mathrm{R}_{a 2}}{\mathrm{I}+\frac{r_{a 2}+\mathrm{R}_{a \underline{2}}}{\mathrm{R}_{c}\left(\mathrm{I}+\mu_{2}\right)}} \tag{II}
\end{equation*}
$$

If $\mathrm{R}_{a 2}=x v_{a 2}$ and $\mathrm{R}_{c}=v v_{a 2}$, this can be written

A^{n}N interesting discussion of this subject, at a joint meeting of the British Sound Recording Association and the Acoustics Group of the Physical Society at the Royal Society of Arts on March irth, was opened by D. E. L. Shorter of the B.B.C. Research Dept. Mr. Shorter reviewed the methods by which the merit of a loudspeaker might be assessed. Measurements of loudspeaker response were easy to make, but difficult to interpret. What we needed was an instrument which would do the interpretation. Meanwhile, subjective listening tests, although not very scientific, provided the most reliable guide. For judging the highest quality of reproduction direct comparison with the original sound over a long period was necessary, but for somewhat lower standards a reduction in listening time could be effected by the use of successive recordings, and also by the use of a source of random noise. By re-rectording a piece five or six times through the medium of a mediocre loudspeaker, its salient errors could be readily distinguished. Similarly, with the random noise source, the characteristic hiss would be coloured by what might be termed the formants of the loudspeaker tone.

Mr. Shorter did not subscribe to the " complacent mysticism" which surrounded the ear as a unique arbiter of quality of reproduction.

Correlation between the results of listening tests and the shape of response curves was possible, and a method of interpreting response curves as a combination of resonant mechanical circuits each with characteristic frequencies, magnifica-

Requirements for Ba'ance and Quality Contro! in Broadcasting and Recording Studios

tions (Q), phases and "dilutions" was proposed.

Although commendable in principle the use of box or infinite baffles did not always result in an improvement and something was lost by the suppression of the back radiation. Attempts to fit the room acoustics with those of the loudspeaker were not often successful as the car was capable of separating the two characteristics.

In the discussion which followed several speakers underlined the importance of balance between bass and treble. Extension of frequency range should be symmetrical about a mid-frequency, say $800 \mathrm{c} / \mathrm{s}$, and it was better not to avail oneself of possible extra frequencies at one end of the scale if complementary octaves at the other end were unattainable. When using two loudspeakers to cover the frequency range, great care was necessary to avoid phase distortion near the cross-over frequency.

One speaker drew attention to the possibility of intermodulation effects due to vibration in the fabric grille coverings which were commonly used; he favoured a rigid metal grille when some form of covering was desirable.

The possibility of using radically different physical effects, e.g., phonic arc flames, for electroacoustic energy conversion was discussed, but it was thought that there was little prospect of the conventional forms of loudspeaker being superseded. No single source of sound could be small enough to avoid interference effects at high frequencies, and at the same time produce comparable sound intensities at low frequencies without creating pressures which would give rise to distortion in the transition from adiabatic to isothermal conditions.

PREMIER RADIO COMPANY
 MORRIS \＆CO．（RADIO）LTD．

ALL POST ORDERS to 167 LOWER CLAPTON RD．，LONDON，E．5．＇Phone ：Amherst 4723. ALL CALLERS to 168 FLEET STREET，LONDON，E．C．4．
＇Phone：Central 2833.
Terms of Business ：Cash with order or C．O．D．over £1．
Send $2 \frac{1}{2}$ d．stamp for latest list．

GOVERNMENT SURPLUS

RELAY UNIT TYPE 9 consiste of a 24 v ．operated relay unit incorporating 3 K T33C vaives，a telephone inge （Uniselector）switch with 6 poles， 26 contacts， 5 P．O． type relays， 2 high－speed relays，and a quantity of other material．Contamed do an attractive relay rack type metal case $19 \times 19 \times 9$ inn．deep．Price $60 /-$ or $\boldsymbol{\gamma}$ ithout vaives， $30 /=$ ．Carriage and packing b
TEST UNIT AP53874 conslsts of a Test Unitiore U．H．F． Tx．，incorporates a 230 V． $50 \mathrm{c} / \mathrm{s}$ Power Pack，with a nooothed output of 240 v ．up to $50 \mathrm{Im} / \mathrm{a}$ and ti．d v .2 a ．， 2 EF50， 1 EC52， 1 EA50， $15 Z 44,1$ Y63 Magic Eye，and large quantlty of condenserg，resistors，and tuning gear． Contained in an attractive steel case．Size $10 \mathrm{~A} \times 9 \times$ tian．Price 45／－．Carriage and packing 5／
METAL RECTIFIERS．
Output 300 v． 60 na， $5 /-275 \mathrm{\nabla} .30$ ma．， 46 ． 250 v ， $30 \mathrm{ma}, 4 /-4 \mathrm{v}, \frac{1}{} \mathrm{~B}, 5 /-36 \mathrm{v} .75 \mathrm{ma}, 1 / 6$ ． 16 v 1月．，12／6． 48 v． 1 a．，25／＊． 16 v． 4 a．， $30 / \mathrm{m} .16$ v． 8 a 37／6． 30 v． $\mathbf{5}$ a．，37／8．
Mains Transformers at exceptional prices．All are heavy duty and robust．All 230 V .50 cycles input．
37
 $4865 \cdot 0 \cdot 865$ v．
760 v .4 v .3 a
$35300 \cdot 0 \cdot 300 \mathrm{v}$
6．3v．1－2a．
31 40v． 3 a. and 104 v .1 .5 a （autowound）
32 700－0．700 Y． 150 man ．，and 1000 v． 30 man ．； 4 v．

34 A 1500 V .5 ma, ，and 1500 V． $5 \mathrm{mab}, 4 \mathrm{v} .2$ a．， 2 V ．
$41 \begin{aligned} & 2 \mathrm{a} ., 2 \mathrm{~F} .2 \mathrm{a} \\ & 550-0.550\end{aligned}$
41 550－0．550 v． 120 m\＆．， 4 v． 2 a．， 6.3 v． 2.5 a．．
$42 \quad 500-0.500$
4 צ 20 н． 170 ms．， 4 サ． 4 a
$\begin{array}{ll}43 & 4 \mathrm{~V} .20 \mathrm{a} \\ 48 & 100 \text { watt }\end{array}$

RADIOGRAM CABINETS，DIgnified appearance and good worknanshlp．Size 3lin．high，18tin．deep， £29．Whe．French polished，veneered wainut．Prote auto atop and magnetic picirup， $\mathbf{2} 7 / 18 / 11$ ．Ditto with Rothermel Orystal Pick－up，£39／12／8．

TEST UNIT TYPE 73 conslsts of a special purpose Oscilloscope thatrequires only rewiring and the addition of a few condensers and resiatora to convert into a standard Oscilloscope，input 230 F． 50 c．A 31 in．C．R． lube and 1 SU220A， 1 EB34， 1524,3 SP44， 2 EAb0， ？E included，Controls are＂Brightness，＂＂Veloclty，＂， X Shift，＂＇＂Y Shift，＇＂Focus Amplifer，＇In／out，＂ Calibrate，＂＂＂on／on／TX．＂Price E8／8／－．Carriage nd packing 20／
METERS．All meters are by the lest makers and are ontained in bakelite cares．Prices are about one－quarter the original cost

Kange	Diank．	Fitting	Type	Price
500 ma．	3 in ．	Proy．	M．C．D．C．	7／6
40 v ．	2 in ．	Flush	M．O．D．C．	59
21 a．	$\because \mathrm{ir1}$ ．	Flush	Thermo H．Y．	$5 /=$
208 в．	2 in ．	Flush	M．C．D．C．	7／6
40 a．	2 in ．	Flush	M．C．D．C．	$7 / 6$
25 н．	3 3in．	Flush	M．C．D．U．	$7 / 6$
25）d．	3 in ．	Proj．	M．C．D．C．	$7 / 6$
25 a．	3 in ．	Flund	M．1．D．O．	$2 / 11$
500 ниа．	2 tin．	H lush	M．C．D．C．	7／6
f）mat．	2tiu．	Flunh	M．C．ll．	5／－
1 mat．	3 in．	Flush	M．C．D．O．	15／11
y 00 ma．	3 lin．	Flush	M．C．D．C．	18／6
20 v ．	2tin．	Fiush	M．C．D．C．	5／9
15\％．	3 ¢in．	Flush	M．［．／A．C．D．C．	$7 / 6$
150 mat	2 in．	Ptush	M．C．D．C．	6／－
300140.	31 in．	Mush	M．C． $1 . C$.	8.6
5，1000 च．	$4 \frac{1}{2} \mathrm{ln}$ ．	Flush	Hiectrostatie	50
1 ma ．	21 fn ．	Flueh	M．C．D．C．	8／6

FERRANTI 1 MILLIAMP METERS．3ijn E turnal lameter，flugh mounting，with geli－contanined Westing． houme hridige rectilier．Stale marked 0.10 volts with titty divisions，fltted in well－made wooden tox $6 \times 5 \times$万hith．， 35
ALUMINIUM CHASSIS．Substantially mate of bright hhatimitr，with ous sides．
 SIPPERHET TUNING PACES．Completely wired and aligried．13．40，40．120，190－670 metres．R．F．stsge $463 \mathrm{k} / \mathrm{c}$ ．：connections only．Complete with 3 ．gang condenser，calibrated，enkraven Peraper tial，and s／M irize．Litz wound polyatyrene insulation，permebblity funed I，F．s，k／c．baniwith．Price complete $\mathbf{8} 3 / 17 / 6$ ． 8 WATT A．C．AMPLIFIER．For $200 / 250 \mathrm{v} .50 \mathrm{c}$ ．maing， 2 to 16 ohus output．Mike．Gram，and Radio 8 witcher inputs，＂2 Sl＇ 41 ，one HLa4 1,2 Pen 45 ，one UCT5．Screened Input Mihe Transiormer．Tone Control．In attractive metal case．
COUDSPEAKERS BY FAMOUS MAKER． 5 Ln ．P．M．${ }^{2-3}$ ohms

Gin．	＂	$2-3$
8 in．	\cdots	$2-3$
10 in．	$"$	$2 \cdot 3$

$2 i n$.
2,000 oh field
$23 / 6$
$85 /$
PPECIAL OFPER OF ELECTRIC GBA MOTORS．Brivishmade，Rimdriven with Bin turntane Fixd aped（ 78 R．P．M）ior 200.450 volts $A C$ E4／19／B．
OSCILLOGRAPH FOUNDATION KITS．Comprise a ransiormer glving an output oi 800 F．，condensers metal rectifiers，3in．Cathoile Ray Tube and Base and

GOVERNMENT SURPLUS

R107．ONE OF THE ARMY＇S FINEST COMMUNICA TIONS RECEIVERS．（See＂W．W．，＂Allg．，1945．） Valves，R．F．anp．osc．Frequency Changer， 2 L．F．＇s．（465 ke．$) 2 n d$ Detector，A．V．C．Af．amp．A．C．mains， $100-250 \mathrm{~V}$,
or 12 v accum ，${ }^{2}$ requency range 17.5 to $7 \mathrm{~m} / \mathrm{cs}, 7.25$ $\mathrm{m} / \mathrm{cs} .102 .9 \mathrm{~m} / \mathrm{cs}, 3.0 \mathrm{~s}$ to $1.2 \mathrm{me} / \mathrm{s}$ ．Monitor $\mathrm{L} . \mathrm{N}, \mathrm{built} \mathrm{ln}$ Complete．Write for full details．$£ 16 / 16 /-$ complete．

ALL－WAVE SUPEREET EIT．A Kit of Partato buid a 6－valve（plus rectitler）receiver，covering 16.50 wetres． Q7，6J7，two 25a6 in pushpuil．Metal Rectitlers are incorporated tor H．T．supply．Ontput impedance is ior 3 and 10 ohms．The latest Werrite Coll Pack incorporat． Ing Iron Dust Cells is used，making construction and alignment extremely simple．A pich－up position on the wavechange switch and pich－up terminals is provided．A caninet Eit including valves Lut without speaker or Price E11／16／3．Includes P．T．
Sintable londspeakers are the GOODMANB 10 in ． 6 －watt hodmans 12 in ．P．M．at $£ 6 / 15$－

NEW 1948 MIDGETT．R．F．RADIO KIT S withilluminated Glass Dial．All parts including Valves．M／C Apeaker and instructions． 3 valves plus Metal Rectifler． $200-55 \%$ metres and $00-2.000$ metres， 200 to 250 v．A．C．or A．C． 6in．£8／0／11，Including Purehase Tax．
NEW 1948 MIDGET SUPERHET RADIO EIT with illuminated Glass Dial．All parts including Valves，M／C 16.50 metres and $200-257$ metres． 200 to 250 vectifier C．Ma C ．State which is recluired．Size， 10 in x bin．\times Gfn．\＆9，including Purchaee Tax．
An attractive Brown Bakelite Cabinet can be supplied for either kit，at $27 / 3$ ，including Purchase Tax．

By
"CATHODE RAY"

THIS is a term I have more than once been asked to clarify, on the ground that beginners find it confusing. It is not at all surprising if they do, seeing that the highest authorities give quite a variety of different meanings to the word. The famous Dutch professor, Van der Pol, called attention to this in a lecture he gave before the I.E.E. ${ }^{1}$ After quoting a selection of the meanings which he had culled from about fifty books, he defined his own choice. As it is in mathematical form I will keep it till later, and start off with the British Standard definition,? which is quite consistent with it, but expressed in words, and rather more general in its scope.

The root of most difficulties with phase, I think, is vagueness about what it consists of. Is it time? Or is it an angle? Or is it something else ? The British Standard has two alternative

What Does It Really Mean?

ceeded." The second is rather more scientific-" The fraction of the whole period which has elapsed, measured from some fixed origin."
Let us consider the first. The "operation" might be the mass production of a radio receiver. Any particular "stage or state" could be named; say, the soldering of the output valveholder cathode contact. If all the sets were manufactured at exactly the same speed at every stage, then any phase in the whole operation could be specified by the time in hours and minutes from the start. In practice, however, the wiring operative's dinner hour might have upset the timing, so that at the same time after starting the next set she might be connecting the first I.F. transformer, which would obviously be a different stage or state. So although time

Fig. 1. What phase is and what it is not are discussed with the aid of these pulse waveforms.
definitions of phase, as it exists "in an operation which recurs periodically." The first is very broad-"The stage or state to which the operation has pro-

[^6]clearly has something to do with phase in this case, phase isn't time.

Next consider another operation which recurs periodicallythe pulses radiated by a radar transmitter. It is a pleasant custom to elucidate periodical opera-
tions such as this by drawing graphs connecting voltage, current, power output, or what you will, with time. Fig. I(a) is such a graph for the radar output. Any point on the graph marks a stage (and hence a phase) in the operation of radiating a pulse. Take A. for example. The same phase in the next pulse would readily be identified as point B. This is a better and clearer way of indicating phase than trying to describe it in words as " the stage at which the peak power of the pulse has decreased by nearly half," or some such story.

Now suppose there is another radar transmitter, identical with the first except for a higher pulse recurrence frequency, as shown by its graph, Fig. I(b). The first pulses shown for both transmitters coincide in time, so it seems reasonable enough to choose point C to mark the same phase as A. Measuring off from C a time interval equal to $A B$ gives point D. There is no doubt about this being an entirely different phase. The point corresponding to B on the second pulse is E, surely. Again time entets into the matter, but phase is not just time, nor even directly proportional to time.

So far, the first B.S. definition seems to have been quite clear, enabling anyone to identify similar phases. But the second one puts it a little more specifically: "The fraction of the whole period which has elapsed, measured from some fixed origin." A period is, normally, a time. Scientifically, it is the time of one complete operation in a recurring series. It is marked " T " in Fig. I (a) and (b). Phase being defined as a fraction of the whole period certainly rules out any such silly mistake as D in Fig. I(b). Evidently one starts reckoning phase afresh from the beginning of each period. A convenient " fixed origin" from which to start is the point O at

Phase-

which the pulse commences. At this juncture one might hastily suppose that a phase, being defined as a fraction of a time period, is itself a time. A little thought will show that this is not so. The fraction of a period, measured from its start, is
different periods and amplitudes, so long as the shapes of the graphs are the same, and only the scales are changed. For instance, in Fig. I (d) the recurrence frequency is higher than in Fig. I (a), so that the period is shorter; also the peak output is greater. But if I (d) were replotted to suitably

Time between start of period and selected phase
Time of whole period

Time divided time is just a number, a ratio. Phase A, for example, could be precisely specified as o.r; that is to say, if the whole period T were divided into to units, it would occur after 1 of these units had elapsed, starting from O.
Applying this to Fig. 1 (b) we immediately get into difficulties. T is a shorter period here, so phase o.r would be nearer O than A and C are. It would be a little higher up the pulse. To take a more extreme case, consider Fig. $I(c)$. Here the period is the same as in (a) but the pulse is fatter. Phase o.I brings us to F, which no one would recognize as the same stage or state of the operation as A. Apparently the two definitions disagree. F is the same 'fraction of the whole period,'" but certainly not the same state.
Where we have gone wrong is in trying to identify the same phase in two different operations. After all, the definition referred to an operation, not to two or more sets of different operations. It would be difficult to identify the stage of wiring the first I.F. transformer in the manufacture of a T.R.F. set ! So long as we stick to Fig. $\mathrm{I}(\mathrm{a})$, or (b), or (c), then the phase reckoned according to the second definition agrees with the first definition. Measuring io per cent of T from the start of the second pulse in Fig. I(a) brings us to point B, which is the same state as A in the first pulse. And so on.

Comparing phases in two or more sets of operations need not be forbidden in every case; it is allowable so long as they are identical operations. That is obvious, of course. What is not so obvious -in fact some people would disagree with it, though it does satisfy both B.S. definitions--is that corresponding phases can be picked out in operations having
altered time and power scales it could be made to coincide exactly with $I(a)$. This being so, o. 1 of T brings us to G, which will generally be agreed to be the same phase as A in I (a).

So far so good. Accepting the B.S. two-fold definition, we have a method of specifying any particular point in a recurring wave-
" The difference of phase (usually expressed as a time or an angle) between two periodic quantities which vary sinusoidally and have, the same frequency. Symbol: φ." Whew! To anyone who has been , carefully studying the B.S. definition of phase, as we have, this raises a whole crop of questions. Why " usually expressed as a time" when we have just decided that it is not a time, " or an angle" (what on earth has an angle to do with it?); and why should the periodic quantities have to vary sinusoidally (we have been blitheiy comparing the phases of aggressively non-sinusoidal waveforms!), or have the same frequency, just as we have decided that there is no need for this? As regards the last point, Van der Pol particularly stresses as an advantage of his conception

Fig. 2. This set of waveforms illustrates phase difference.
menon) by means of a fractional number. It is not a time or a distance or any other physical dimension, although in most of the cases in which we are likely to be interested it is related to time and can be represented (on a graph) as a distance.

The chief usefulness of the phase idea, however, is not just in marking or identifying stages or states or points. Nearly always it is a phase difference that is involved, even when the word " difference" is left out. That is why it is important to be quite clear about what sorts of different waveforms, etc., can be compared as regards phase. The B.S. definition of phase difference is not really a definition, for it starts off by saying it is ""The difference of phase" What it does do is to lay down certain limitations-
of phase that it does enable one to speak of a phase difference between oscillations of different frequencies.

To avoid any abrupt break in the line of thought, let us postpone for a few minutes all these new complications, and go on calmly with our radar pulses. Fig. 2 (a) is just a repetition of the Fig. I (a) waveform, but we are going to use it for considering phase difference. Fig. 2 (b) is yet another repetition of the same graph, but it is to be supposed to relate to another radar transmitter. No one is likely to dispute the statement that the two transmitters are pulsing "in phase." That is to say, at every instant their phases are the same; in other words, the phase difference is nil.

Fig. 2 (c) is the graph of a third
transmitter, still with the same recurrence frequency. Consider the phase at the starting line. Taking the commencement of the pulse as the fixed origin in all cases, the phase of the first two is zero, while that of the second is, at a guess, $+\frac{2}{3}$ or $-\frac{1}{3}$, depending on whether one reckons from the last prehistoric pulse or the first one to be recorded here. The phase difference of (c) relative to (a) and (b) is $+\frac{2}{3}$ or $-\frac{1}{3}$, or in other wordis (c) leads (a) and (b) by $\frac{2}{3}$ of a period, or lags by $\frac{1}{3}$. That is because a (c) pulse started $\frac{2}{3}$ of a period before the start of a pulse in (a) and (b), and another pulse is going to start $\frac{1}{3}$ of a period later. If, instead, you take (c) as the standard, and note the phase difference of (a) and (b) relative to it, you will find that the signs are reversed; the phase difference is $-\frac{2}{3}$ or $+\frac{1}{3}$. Make quite sure of this before passing on! The same phase difference can be either positive or negative, just as the potential difference between two terminals of a battery is either positive or negative according to which terminal is taken as zero.

You may say there are more than two al.ternative phase differences; the (c) pulse can be said to be $1 \frac{1}{3}$ or $2 \frac{1}{3}$ or even $3 \frac{1}{3}$ periods behind (a). True, but seeing that phase has been defined as a fraction of a period, it is surely just being awkward to bring in an indefinite number of other values containing whole numbers. The only justification might be if particular cycles in one of the sets of waves were connected in some way with particular cycles in the other set. Suppose that Fig. I (c), instead of representing transmitter pulses, represented the received echoes (not to the same power scale!). Then it would seem rather absurd to say (c) led (a) in phase; it would suggest that an echo arrived before the pulse which caused it had been radiated! If echo A were caused by pulse A, the natural thing would be to say that its phase difference was $-\frac{1}{3}$. But if pulse A produced echo B, this fact could be brought out by saying the lag was not $\frac{1}{3}$ but $\mathrm{I} \frac{1}{3}$.

It is necessary to be rather careful about this, though. It is likely to lead to entirely wrong ideas- about phase. The lag between radar pulses and echoes is really and truly a time lag. It
is not, in its nature, a phase lag at all. A single pulse with its single echo would display the same time lag, but as it wouldn't be a periodical operation, phase wouldn't exist at all. To avoid confusion it is better to call a time lag a time lag, and if for any reason it may be possible and clesirable to treat it as a phase difference, never to forget that it is only indirectly so, and that the agreement would be upset, for example, by a change in frequency.

Current "Leading" Volfage

Another example of the confusion of thought caused by thinking of phase as time is probably more familiar to most readers. When we study simple A.C. circuits we learn that the current in a purely capacitive circuit leads the voltage by a quarter of a cycle (or period). Since there is no doubt that the current is a result of the voltage, it seems queer, to say the least, that the result should come before the cause!

As this is a common stumblingblock we might digress from pulses to consider it. The fallacy, of course, is in assuming that each voltage peak from the supply is the cause of a current peak. That is so in a resistive circuit, but not in a reactive one. You can have as many volts as you like across a condenser, but so long as the voltage is steady there will be no current (if it is a good condenser). When current flows in or out of a condenser, it charges or discharges it; that is to say, the voltage across the condenser rises or falls. Conversely, if the voltage across it is made to rise or fall, current flows in or out. The more rapidly the voltage changes the greater the current. If the supply voltage is sinusoidal, its most rapid increase is when it is zero, at point 0 in Fig. 3. So it is that zero (but rapidly increasing) voltage which causes the peak current. At point I the voltage is momentarily not changing at all, so the current must be zero. At point 2 the voltage is decreasing at its fastest, so the current is at its negative peak. And so on. The cause of the peak current at the start of Fig. 3 is the rapid increase of voltage at 0 , not the voltage peak at I .

Clear, undistorted output, efficiency in operation, robust construction and complete reliability are features of TRIX Sound Equipment which have led to its installation in Sports Arenas, Rinks, Dance installation in Sports Arenas, H
Halls etc. all over the country.
In the entire range there is Sound Equipment not only for Sports Arenas but for every purpose and every type of installation from a 500 watt rack outfit to a portable battery model. A list giving full details will be gladly sent on request.

SOME TRIX INSTALLATIONS Queen's Ice Rink, London. Richmond Ise Rink.
Gateshead Greyhound Stadium. Mayfair Hotel, London. Cricklewood Dance Hall. Sportsdrome, Twickenham. Victoria Ballroom, Nottingham. State Opera House, Ankara, Turkey. and many Theatres, Restourants, Clubs, etc

See our exhibit at the

B.I.F. Olympia, Stand No. H. 42

THE TRIX ELECTRICAL CO. LTD. 1-5 Maple Place, Tottenham Court Road, London, W.I. 'Phone: MUSeum 5817,' Grams \& Cables: "Trixadio, Wesdo,London."

Typical Chassis Type Amplifier. ANPLIFIERS MICAOPHONES - LODDSPEAKERS

Phase-

Still another wrong idea of phase sometimes mystifies students of wave guides who have previously learned that nothing

Fig. 3. The well-known case of "current leading voltage " sometimes causes perplexity, owing to a wrong idea of phase.
can travel faster than light. The mystification occurs when they are told that "phase velocity" in wave guides is always faster than light. It is true that no material or energy or radiation or signal of any kind can travel faster than light, but phase is none of these things; in a wave guide it is a mere pattern formed by relatively slowly moving fields. It is like the cutting intersection of the blades of a pair of scissors. The intersection is just a point in a geometrical pattern, like phase, so has no restriction on its velocity.

Now let us get back to our pulses. One thing I omitted to point out about Fig. 2 (a) and (c) is that the phase difference which we observed on the starting line is the same everywhere else. If that is not obvious you had better try a few places to see; for example, the second dotted line marked X. Here the phase of (a)
is $+\frac{1}{2}$, and of (c) $+\frac{1}{6}$. Subtracting $+\frac{1}{2}$ from $+\frac{1}{6}$ to get the difference, we have $-\frac{1}{3}$ as before.

But now consider Fig. 2(d), which has a lower frequency. At the start it is in phase with (a). But as time rolls on, (d) lags behind. At line \mathbf{X} it is half a period behind. At the fourth pulse in the (a) series it is a whole period behind. Or in phase, if your prefer it. The phase difference varies with time. That is a feature of the phase differ-

clearly by drawing a phase / time graph, as in Fig. 4(a). Adhering to the strictly fractional idea of phase, which is what the British Standard seems to have had in mind, the phase jumps back to zero at the completion of each cycle, as shown. The phase difference is represented by the vertical distance between the two graphs. As you see, (a) gains a steadily increasing lead up to the end of its first period; then after its jump back it finds itself lagging, but it gradually reduces this lag,

Fig. 4. Graph of progressive phase difference between two similar waves of different frequency, Fig. 2(a) and•(d), according to two different definitions of phase difference.
ence between wave trains of unequal frequency.

This process can be seen more

ILIFFE \& SONS LTD., Dorset House, Stamford Street, London, S.E.1.
until (d) jumps back and gives it a big lead. Finally the two come momentarily into phase again, after three (a) periods, which is the same time as two (d) periods.

If, on the other hand, you prefer to let your phase accumulate, as I understand Van der Pol and others do, the diagram is as in Fig. 4(b), in which the (a) series gains an ever-increasing lead at a steady rate. The difference between these two diagrams shows one of the differences in the minds of the authorities, which one has to know if not to be caught. Of course the British Standard wouldn't own Fig. 4(a), because the B.S. rules out phase differences between quantities of unequal frequency. Don't ask me why; we seem to have been getting along quite happily with different frequencies on the basis of the British Standards definition of phase.
(To be concluded.)

Short-wave Conditions

March in Retrospect : Forecast for May

By T. W. Bennington and L. J. Prechner (Engineering Division, B.B.C.)

D
URING March the average maximum usable frequencies for these latitudes decreased during the day and increased considerably during the night. Communications on frequencies higher than $35 \mathrm{Mc} / \mathrm{s}$ were very infrequent. There was in March more ionosphere storminess than in February, much of it very probably connected with two large sunspot groups, one of which crossed the central meridian of the sun on March 3rd and the other on March i4th. Ionosphere storms occurred on 2nd, I3th-16th and 2Ist, the conditions on 15 th being particularly disturbed.

Of the several "Dellinger" fadeouts which occurred, that at 1240 G.M.T. on the 20th appears to have been most severe.

Forecast.-It is expected that during May daytime M.U.F.s in the Northem Hemisphere will undergo a considerable decrease, though, because of the longer duration of daylight at this end of the circuits, moderately high frequencies will remain of use for longer periods than during April. Night-time M.U.F.s should continue to increase and thus, during May, there will be less change in working frequencies from day to night than during the previous months.

Daytime communication on very high frequencies (like the $28-\mathrm{Mc} / \mathrm{s}$ band) should be relatively infrequent except on southerly transmission paths, but over many circuits frequencies as high as $15 \mathrm{Mc} / \mathrm{s}$ will remain usable till well after midnight. During the night frequencies lower than $\mathrm{IIMc} / \mathrm{s}$ should not really be necessary at any time.

For distances up to about 1,800 miles transmission will be controlled largely by the E and F layers, and for these distances both daytime and night-time working frequencies should be higher than in April.

Sporadic E usually increases sharply in its rate of incidence during May. Medium-distance communication (up to 1,400 miles) by way of the Sporadic E layer may be possible for about I_{5} per cent to 25 per cent of the time on frequencies exceeding $2 \mathrm{IMc} / \mathrm{s}$. Frequencies as high as 50 to $60 \mathrm{Mc} / \mathrm{s}$ may be occasionally reached for a very short time.
Below are given, in terms of the broadcast bands, the working frequencies which should be regularly usable during May for four longdistance circuits running in different
directions from this country. In addition, a figure in brackets is given for the use of those whose primary interest is the exploitation of certain frequency bands, and this indicates the highest frequency likely to be usable for about 25 per cent of the time during the month for communication by way of the regular layers. Times in G.M.T.
$\left.\begin{array}{ccccc}\text { Montreal : } & 0000 & 15 \mathrm{Mc} / \mathrm{s} & (20 \mathrm{Mc} / \mathrm{s}) \\ & 0200 & 11 & \prime \prime & (17 \\ & 1600 & 15 & ", & (21 \\ \hline\end{array}\right)$

During May ionosphere storms are not as a rule very prevalent, nor are the effects of those which do occur usually particularly disastrous to radio communication. At the time of writing it would appear that storms are more likely to occur during the periods 5th-Ioth, I5th and 22 nd-24th than on the other days of the month.

SOUND REPRODUCTION MANUAL

THE new "Partridge Manual" replaces "The P.A. Manual'" and "The Partridge Amplifier Circuits" previously issued by Partridge Transformers, 76-78, Petty France, London, S.W.i. It deals broadly with sound reproduction and in addition to practical data on amplifier design contains useful information on sound and hearing, and acoustical problems such as the location of microphones and loudspeakers.

The manual which costs 5 s runs to Go pages and contains about 30 figures and charts.

Bi-colour Wire

Two-colour P.V.C.-insulated connecting wire is now being produced by a new process by Associated Technical Manufacturers, Vincent Works, New Islington, Manchester, 4. It is especially intended for use in elaborate colourcoding schemes.

And now the STANDARD RACK

Latest edition to the Imhof range of cases is the new Seandard Rack and Panel assembly. Of heatry gauge mild steel angle, it is strongly constructed with welded corners, and finished in grey stove enamel. Standard $19^{\prime \prime}$ Rack panels of $1^{\prime \prime}$ thick mild steel plate are available in four sizes:-1 ${ }^{\prime \prime}$, $5 \frac{1}{\prime \prime}^{\prime \prime}, 89^{\prime \prime}$ and $10 \frac{1}{" \prime}^{\prime \prime}$ deep finished in grey stove enamel.
Prices:-
Standard Rack frame $5^{\prime} 6^{\prime \prime}$ high $£ 4!5$ s. Od. each Panels $19^{\prime \prime} \times 10 \frac{1}{n}^{\prime \prime} \ldots$.... Its.3d. ."

Plated chassis with associated mounting brackets 15 s. per set.

FRECISION BUILT INSTRUMENT CASES 112-116, NEW OXFORD STREET, LONDON, W.C. 1
Telephone: MUSeum 5944

Ten Per Cent More

THOSE of us who are striving with might and main to achieve the extra ten per cent for which the Prime Minister has appealed cannot help feeling sorry that more scientific and subtle methods are not used to achieve this desirable target. The sandwiching of these calls on our patriotism between the more alluring appeals made by the seductive sirens of Wardour Street is of little value.

The gist of the whole problem so far as I can see it is that we should all put in longer hours of work and so increase production. I cannot help feeling that however willing we may be, the flesh is weak and to some of us, myself included, these appeals to our better nature have about as much effect as the leaflets, which we dropped from the skies, did on the Germans. Experience taught us then that sterner and more scientific measures were necessary and such I feel will be necessary now to extract the extra hour out of us painlessly and without protest.
The method of doing it must be fairly plain to all of you who live in districts served by A.C. mains. It will be recalled that in the days immediately preceding the great freeze-up in February, 1947, when there were frequent and, at times, lengthy periods of frequency "slow down," the B.B.C. used to bid us

Seductive sirens.
not to put forward the hands of our synchronous clocks as the lost time would be made up at the generating station.

It is obvious from the foregoing that if the Government, who now own all electricity supplies, cared to do it, they could quite easily issue a ukase to the engineers to speed up the frequency at night so that we lost an hour's sleep unbeknown

By FREE GRID

to us and slow it down during the daytime so that we did an hour's extra work, also unbeknown.

There are, of course, several practical difficulties in the way which might be likened to the nasty little fact which sometimes lestroys a beautiful theory. But all/these difficulties can be overcome with a little ingenuity. The first of these is, of course, that some people are served by D.C., while others have no mains at all. This can easily be remedied by quickly supplying A.C. to everybody. Labour and materials thus expended would be recouped a thousandfold when once the scheme got going. After that it would, of course, have to be made a penal offence to use or own ordinary clocks, but this would be well within the scope of a ministerial regulation. Watches would, of course, be a bit of a snag but I feel sure that everybody could be induced to surrender them for export to the Andaman islands or somewhere like that. The real snag is, of course, the shift workers, but even here it must be remembered that most factories use individual master-and-slave clock systems which could easily be slowed down and speeded up at the master clock.

Babel Up to date

T'HE Oxford accent, like Cambridge sausage, has no connection with the ancient seat of learning after which it appears to be named. Unfortunately, however, some people seem convinced that this ghastly sort of pseudo-English is both used and encouraged at Oxford, rather in the manner that some people imagine that people in Australia spend their time in throwing boomerangs and crying coo-ee. I'm sure I don't know where this particular accent is used. The B.B.C. announcers are not guilty.

Although they are not guilty of using this atrocious travesty of good English, the B.B.C. announcers are, I am sorry to say, very guilty of causing bewilderment and chaos among those of us who are not alumni of places where the niceties of English pronunciation are taught. I am no supporter of a dull, rigid and monotonous sort of standard

No alumni.
English, and rejoice to hear the singsong accents of the Rhondda Valley or the still surviving Cromwellian accent in Sele Suffolk.

But from the lips of B.B.C. announcers when they read the news or bid us be ready to hear some sentimental slush from the lips of an inane crooner, I certainly think that we ought to hear some form of standard pronunciation as indeed I think we used to do at one time. To mention but two of the many words upon which the B.B.C. announcers do not seem to be agreed; when we talk of "finance" must we call it "fine-ants" or "finnants," and is it "civil-eyes-ation" or "civil-liz-ation"?

Perchance there is no hard and fast rule on this matter, and one method of pronunciation is as good as the other, but surely the announcers can all use the same pronunciation even if it is the wrong one. We have in this country no equivalent to the " Académie Française" to guide us in this matter, but surely the B.B.C. can find somebody as painstaking as the late Professor Lloyd James to guide them in this matter. Maybe I shall be told that there is an authority at the B.B.C. to see to these matters and probably the B.B.C. will send me some little "Announcers" Vade-mecum" which, like the Highway Code, is supposed to be studied by all and so seldom is-by pedestrians at any rate. Don't think that I am trying to set myself up as an authority on good English. I am not, for I am, relatively speaking, a newcomer, an alien whose ancestors came over from Normandy not yet goo years ago. I make no pretence to be a real dyed-in-the-wool Englishman who came over with Hengist and Horsa some six hundred years earlier - 449 was the year if my memory serves me right. .

LETTEIRS TO TME EDITOR

Midget Valves • F.M. and Interference -No-A.F. Receiver + Contact Resistance

British Sub-miniature Valves

IWAS glad to see the article in the March, 1948, issue of your journal, and to learn that a serious attempt is being made by British manufacturers to supply these tiny valves, which have hitherto come principally from the United States.

I fear that some of your readers may be misled by the comparison made between the British valves and their American counterparts. The figures given for the English valves relate to a product which is not yet commercially available, whereas the figures for the American counterparts relate to valves which have been freely available for the past two years, and which are now obsolescent.

Taking first the statement that " These (English) valves compare favourably in size with corresponding sub-miniature valves of American manufacture." While the English valves are 0.4 in in diameter, the American valves approximate to a rectangular cross-section 0.385 in by 0.285 in . The significant factor here is the flatness of the American valve, of which full advantage is taken by some English and most American manufacturers of miniature hearing aids. British-made hearing aids are in current production which are too slim to accommodate the new English valves. To increase the dimensions of these aids would be to put this country at a disadvantage in important export markets.

Again, while it is appreciated that the reduction of the total filament current of a three-valve hearing aid to $1.25 \mathrm{~V}, 50 \mathrm{~mA}$ represents a very considerable technical feat, the present American hearing aids have reduced the current drain to 40 mA . The voltage amplifier valve used, Raytheon CK512 AX , has a filament rated at $0.625 \mathrm{~V}, 20 \mathrm{~mA}$. The voltage gain obtainable is slightly above the figure quoted for the equivalent new English valve. These valves have been produced and are in use in very large quantities and have
proved extremely reliable; indeed, the service obtained is better than that which we have come to expect from full-sized battery valves. The figure quoted in the article of 75 mA filament current for a similar circuit employing valves of American manufacture is seriously out of line with current practice.

It seems appropriate to point out here that initial leadership in the design and manufacture of sub-miniature valves came from this country, and in the late 1930s such valves were exported to the United States. ${ }^{1}$ Immediately after the war, a satisfactory sub-miniature output valve with a filament current of 30 mA was available in this country, and at that time was superior to equivalent American valves in that respect. Such valves have been used by the company with which the writer is associated for nearly two years with satisfactory results. It may be of general interest to readers to learn that a complete range of these subminiature valves comprising more than twenty different types, is now available in the United States, and that as well as valves specially designed for hearing aids, there are also types for portable radios, U.H.F. oscillators, gas triodes and electrometers.

I have every reason to believe that the new English developments will lead to the production of miniature valves of the highest performance and reliability, but it does seem important to take this opportunity of reviewing these developments in their correct perspective in order to avoid any suggestion of complacency. J. P. ASSENHEIM,

Chief Research Engineer,
Amplivox, Ltd.,
London, W.i.

"F.M. Reception"

REFERRING to the description
in your March issue of comparison tests on F.M. phase dis-

MWISSOND
 SPECIAL ADVANCE NOTICE

an unusual circuit with an unusual layout

which mat set the fashon for future design. The most advanced design for Radio Reception ever offered to home constructors, covering V.H.F. from $2 \frac{1}{2}$ to 2,000 metres. It includes Frequency Modulation, Television Sound Short-Wave and Broadcast Bands with separate tuning for V.H.F. which also functions as bandspread on all other short-wave bands.

Brief Description of Circuit

A double frequency changing circuit is used The aerial input is fed into the first R.F. tuned transformer stage, the output being taken to another H.F. transformer coupled to a second R.F. stage using short wave R.F. pentodes, the sensitivity of which is controlled by suppressor and control grid bias. The second R.F. stage is again coupled to a H.F. transformer feeding into the grid section of the first frequency changer. Tuning is effected hy a four-gang ceramic insulated tuning condenser mounted on rubber. A separate low capacity four gane V.H.F, tuning condenser is wired into the coil unit to a double wafer switch unit (four-bank) mounted in each coil section. 24 coils are used, iron-cored litz wound on all bands except the Television and F.M. coil, which is wound on a ceramic former.
A separate oscillator is used of the "Transitron "t type, another R.F. pentode.
The output from the mixer is fed into a wide band HIGH intermediate frequency amplifier, two stages are used, the last I.F. transformer feeding into the sccond frequency changer stage (a triode-hexode valve) with a fixed frequency oscillator stage. The output from the second frequency changer is taken to a LOWER, intermediate frequency amplifier, the output of which is taken to a double triode (6 C 8), the 1st triode section of which is used as an infinite impedance detector, then to special filter circuit feeding into the output stage a pentode (EL33), alternatively an octal plug can be fitted into the output valve socket and connected to any L..F amplifier. The second triode section of the 6C8 is used for AVC control only.
All the necessary smoothed I.T and HT is taken from a mains transformer 200-250 volts Theoretical and full size practical blue prints for this UNIQUE receiver available on and after the

RELEASE DATE—MAY 27th.

Price 10/-. ORDER NOW!
Registered design. This will be illustrated when advertisement space permits.

6-VALVE SUPERHET CIRCUIT

A circuit that will please the most critical. This circuit has been designed to receive all worthwhile stations on the medium wave band ($200-540$ metres) with a high fidelity output. Short Waves (16-47 metres) are as good as obtained on some purely shortwave receivers. Australia and Annerica have been received regularly by many of our customers at loudspeaker strength. Long Wave: The few stations now operating are well received.
Blue Prints. 2 Practical and 1 theoretical with detailed priced list of components, $3 / 6$
per set.

307. HIGH HOLBORS

[^7]Letters to the Editor-
criminators and ratio detectors, I am not quite satisfied with the legitimacy of making the impulsive interference tests in the absence of a frequency modulated signal.

In the case of the phase discriminator this is probably justifiable, but in the ratio detector it would appear that when the impulsive interference has a peak value greater than twice the peak value of the signal, the capacitor C_{3} would charge up rapidly to almost the peak value of the interference, and not to the peak value of the signal.

The diodes will then be rendered non-conducting except during interference pulses, and the signal will either disappear or at least become seriously distorted.

I should be interested to know whether the authors have made any tests under these conditions, and whether they have any evidence of distortion occuring during impulsive interference.
J. E. PATEMAN.

Enfield, Middlesex.

[The authors of the original article comment as follows.En.]
THE biasing-back effect which not, in fact, been observed until the strength of the impulsive interference is so great that the programme is virtually drowned in it. In this case, it is hard to say whether the programme is being aurally masked by the interference or whether it is being electrically biased back by this. It would seem that the probable reason why this biasing-back effect is not serious is because the condenser C_{3} would not charge up rapidly to almost the peak value of the interference because the charge time of the network, including C_{3}, is probably a little longer than the discharge time. This being the case, the voltage across C_{3} would tend to something a little lower than the mean value of the impulsive interference which, for normal repetition rates, would be far below the peak value and, therefore, probably insignificant.

We have made some tests in the conditions specified by Mr. Pateman and we have not noticed any evidence of distortion occurring
during impulsive interference, at least, until it becomes so disturbing that the programme coming through it is not worth listening to at all.

High-level Detection

IN the last two years you have published details of a number of high-quality amplifiers and receivers but all of them have had one or more A.F. stages before the output. There has been no mention of my own particular pet -the high-voltage diode feeding a push-pull output stage without any intermediate amplification. This strikes me as being capable of permitting the best quality reproduction on radio; you allowed me to describe it in Wiveless World as long ago as November, 1934

I contend that the diode provides the most linear detection when used as high on its slope as possible and that it permits the use of a most convenient method of paraphasing. The use of only the one A.F. coupling has advantages in a decrease of phase-shift, in stability and in diminuation of hum.

It may interest you to know that, thanks to improvements in valves, my present set represents a further stage in my search for quality. The D63 diode I use is capable of handling up to 2 mA per diode (mine are strapped in parallel) allowing a low D.C. load to be used and therefore a better relationship between the D.C. and A.C. loads (vide Langford Smith's "Radio Designer's Handbook"'). The D63 is capable of giving a sufficient reserve of output to permit a fair amount of negative feed-back being employed in the PX25 output circuits, a further precaution which increases quality. I found little difficulty in feeding an adequate R.F. voltage to the diode, thanks to the use of an output tetrode in the third R.F. stage; nor had I much trouble with instability as the gain per stage is low and totally screened pre-set tuning as well as staggering of the tuning allowed me to get the three stations I require with the widest possible band of frequencies.

While such a set is admittedly extravagant, to me it represents the nearest approach to an ideal
both regarding quality of reproduction and simplicity of design. It has two disadvantages, however ; it cannot very well be used for gramophone reproduction, and, most serious, it shows up many of the B.B.C. transmissions, particularly recordings, long landline and short temporary landline transmissions. On the other hand it provides me with a supreme enjoyment of the really high quality transmissions and programmes that are frequently broadcast by the B.B.C. This alone makes the labour and expense well worth while.

> W. MACLANACHAN. London, W. 8.

"Cleaning Switch Contacts"

IN his article in your February, 1948 issue J. J. Payne does not mention the more complex problems of contact non-linearity. These might not cause any great clifficulties when dealing with circuits where small changes in contact resistance can be neglected. But such changes undoubtedly occur and Mr. Payne's statement that high spots " will still make electrical contact" because " the contact pressure will force the high spots through this layer'" (of grease) must be read with caution. There is no reason to believe that there will not be a very fine layer of grease between the contacts even with comparatively high pressures. This layer will cause a small change of contact resistance. Also, this resistance is affected by the substance or gas with which the gaps between any two contacts are filled, whether air or grease or impurities or any combination of these. Thus, even if the area of direct contact is not altered, whether grease is applied or not, as Mr. Payne states, the contact resistance will be altered in cases where the gaps do not act as a perfect insulator, as they seldom do. Contact resistance problems will then become considerably more complex.

G. L. WALLACH.

London, S.W.I5.

WITH reference to the interesting article in the February Wireless World, I have found carbon tetrachloride in which a quantity of " Vaseline" has been dissolved--enough to give the
mixture a rich amber colour-to be very satisfactory. It would appear that this meets the require-
ments referred to in the article. R. V. GOODE.

Totland Bay, I.o.W.

New Domestic Receivers

A table model battery receiver (Model A8or) designed to run off a I $\frac{1}{2}$-volt dry cell or 2 -volt accumulator has been introduced by Allander Industries, Bridgeton, Glasgow.

Ekco "Princess" portable.
Loctal base valves are used in the four-valve circuit which covers short, medium and long waves. The

In the " Princess" portable, made
by E. K. Cole, Southend-on-Sea, miniature valves are used in the 4^{-} valve superhet circuit which operates on medium and long waves. The battery consumption is 0.25 A at $I \frac{1}{2} \mathrm{~V}$ and 9 mA and 69 V . The dimensions are $8 \frac{1}{4} \mathrm{in} . \times 7 \frac{1}{8} \mathrm{in} . \times 2 \frac{7}{6} \mathrm{in}$. and the weight approximately $4 \frac{1}{4} \mathrm{lb}$. Provisionally the price has been fixed at $£ 1313$ s plus purchase tax.

A four-valve, four-waveband A.C. superhet (Model 3I) has been added to the range of receivers made by Invicta Radio, Parkhurst Road, London, N.7. The price is $\mathrm{E}_{\mathrm{I}} 8 \mathrm{I} 8 \mathrm{~s}$. plus purchase tax.

Those who saw the 128 series of export receivers made by Murphy Radio, Welwyn Garden City, Herts, at Radiolympia, will be interested to know that equivalent models for sale in this country are now available. In addition to the usua! medium and long-wave ranges the sets cover 75-200 metres and have bandspread tuning on the 16,19 , 25, 31 and $41-49$ metre bands. An SP. 1 I R.F. amplifier is added to the 4 -valve superhet circuit for the bandspread ranges. The price is $£ 31$ plus purchase tax and alternative models are available for A.C. or A.C./D.C. supplies.

Manufacturers' Literature

Leaflet giving particulars of television aerial installation service from Wolsey Television, 87 , Brixton Hill, London, S.W.2.

Leaflet describing the new " Acru 24" soldering iron from the Acru Electric Tool Manufacturing Co., 123, Hyde Koad, Ardwick, Manchester, $\mathbf{I 2}_{2}$.

Descriptive leaflet and specification of the Barker Model 148 loudspeaker, from Barker Natural Sound Reproducers, BCM/AADU, London, W.C.I.

Catalogue of radio components, receiver kits, etc., from Coulphone Radio, 58, Derby Street, Ormskirk, Lancs.

Descriptive leaflet dealing with the "Aldryunit" battery eliminator from the Dulci Company, 95-99, Villiers Road, Willesden, London, N.W.z.

Leaflet No. r,303, " Metal-to-Glass Terminal Seals," from the Edison Swan Electric Co., 155, Charing Cross Road, London, W.C.2.

Illustrated folder describing 15 in and I8in heavy-duty loudspealsers from Goodmans Industries, Lancelot Road, Wembley, Middlesex.

Catalogue of silvered mica capacitors from Stability Radio Components, I4, Normans Buildings, Central Street, London, E.C.I.

Booklet giving dimensions of transformer and choke laminations in Mumetal, Radiometal and Rhometal from Telegraph Construction and Maintenarce Co., 22, Old Broad Street, London, E.C.2.

Catalogue and price list of microphones, loudspeakers and accessories from Vitavox, Westmorland Road, London, N.W.g.

Illustrated folder on Carbon Pile Resistors from the Morgan Crucible Co., Battersea Church Koad, London, S.W.1I.

Catalogue of Single Phase Medium Current Rectifiers (Bulletin SRT6, issue 2) from Standard Telephones and Cables, Rectifier Division, Oakleigh Road, New Southgate, London, N.ir.

A.F. Measurement Service

A series of twenty-four tests of performance of audio-frequency amplifiers is undertaken by A. E. Cawkell, 7, Victoria Arcade, The Broadway, Southall. These include distortion, phase shift, etc., and trace photographs of oscillograms. The charge for the comprehensive tests is 6 gns and a selection of four " minimum essential," tests can be made for $2 \frac{1}{2}$ gns. It is hoped later to extend the service to microphones, loudspeakers and pickups.

The following figures are the pass figures

on final test for Model QA12/P.

 AMPLIFIER

FREQUENCY RANGE
I $0.3 \mathrm{db} 20-2000$ c.p.-
SENSITIVITY
1.5 millivolss boosts) full output
(without
(without millivolts foi
(with bOOSt
BASS CONTROL RANGE
c.p.i. BASS CONTR +16 db at
-12 db to
. relative to 600 c.P. S . RANGE 15000 TREBLE CONTR 18 db at 15
30 db to $+10600 \mathrm{c.p}.$. - 30 do ro tative to $600 \mathrm{c.p}$.... c.p.s. RTION CONTENT (up to 12 wates $<0.2 \%$ 2nd Harmonic $<0.3 \%$
3rd Harmonic $<0.03 \%$ 3 rd Harmonder $<0.03 \%$
Higher order 0.4% Tocal OROUND NOISE tul gain
BACKGR 66 db at than betterthan - 66 db
DAMPING FACTOR INPUT MMPEDANCE
1.5 megohms SOURCE 50,000 ohms
UP 20 MPE OUTPUT 1 MPEDANCE
7 and 15 hm

© Acrustical

ACOUSTICAL MANUFACTURING CO., LTD., HUNTINGDON

TEL: 361

Random Radiations
 By "DIALLIST"

F.M. Receivers

Though V.f.f. f.m. transmissions have been made regularly by the B.B.C. for some time now, and though the corporation's policy is to develop this kind of high-fidelity broadcasting in addition to its medium-wave, medium-fidelity system, our radio manufacturers don't yet seem to be offering the man in the street apparatus that will receive the transmissions. I expect that they'll be doing so before the autumn. If they take the right steps to interest the public, they are sure to reap a rich reward. There must be a demand for high-fidelity reproduction, for the success of the Third Programme has proved the unexpectedly wide interest of listeners in good music-and good music cannot be reproduced properly by other than high-fidelity apparatus. Not the least of the other advantages of F.M. are freedom from most forms of interference and the fact that there is no need for "contrast compression" to be anything like so severe as it must be in A.M. broadcasting.

New Primary Cells

Particulars of two new primary cells, both using magnesium instead of zinc for the negative electrode, have reached me from the United States. The possibilities of magnesium have been realized for sometime, but there were until recently difficulties about producing at the right price adequate supplies of a sufficient degree of purity. Unless the metal is well over 99% pure the shelf-life of cells is apt to be unsatisfactory. One type developed for special war purposes by the Burgess Battery Company has a spirally wound positive electrode of silver foil. The depolarizer of silver chloride is applied to the strip in the form of a paste. The electrolyte is simply-water! Such cells are capable of quite remarkable discharge rates at relatively high voltages. One battery, for example, which weighs io oz consists of two cells in series. It will supply a substantially constant current of 53.5 amperes at 2.8 volts for 6 minutes. A single cell of another type, cylindrical in shape and measuring $\frac{8}{8}$ in
$\times 2 \frac{5}{8} \mathrm{in}$, gave under test too amps at $\mathbf{I} .4$ volts for $\frac{1}{2}$ minutes. The zinccarbon dry cell averages 1.55 am -pere-hours per pound of weight, the lead-acid accumulator 5.6 Ah , the nickel-iron accumulator 9.6 Ah and the magnesium-silver chloride cell 12.9 Ah. The magnesium cell also behaves well under small loads such as those imposed on the H.T. batteries of wireless receiving sets. In such cases the discharge curve, whether the load is continuous or intermittent, remains almost flat, the voltage being 1.55 V per cell until a short time before the battery is run down. At that point there is a sharp downward bend. The discharge curve is, in fact, shaped almost exactly like that of a secondary battery or cell. We seem at last to be progressing in the matter of primary cells. If only someone would invent that A.C. battery demanded years ago by " Free Grid " !

Television in America

According to the latest statistics prepared by the American Radio Manufacturers' Association 170,000 televisors (they spell it televisers) were sold in the States during 1947. The average price paid by viewers for their apparatus is rather surprising, working out as it does at $\$ 759$, or $£ 189$ 15s. I think I mentioned some time ago in these notes that American television receivers were a good deal more expensive than ours; but I hadn't realized that the difference was so great. The figures are official, so there's no mistake about them. It is a curious fact that though American manufacturers can and do beat us hollow in the matter of broadcast radio receiver prices (you can buy 4^{-} valve plus rectifier models from $\$ 29$, or $£ 75$ s apiece, or even less), we are producing good and reliable television receivers at about one-third of the average price over there. Probably American televisor prices will come down with a run when production really gets into its stride. It seems to be doing so fairly rapidly. In January, 1947 (a month of five working weeks) 5,437 televisors were manufactured. In the five working weeks of October the total had risen to 23,693 ; and in the same number
of weeks in December it reached 29,345. The industry's forecast of the number of vision receivers in use by the end of this year is a round million; you can see, then, that the new sets produced are going to average about 70,000 a month this year.

Transmissions in the States

At present the best-served cities in America, so far as television is concerned, are New York, Philadelphia, Chicago, Los Angeles, Washington, Detroit, Baltimore and St. Louis. The present scheme (already partly carried out) is for a chain of television transmitters down the east coast, a similar chain down the west coast and a connecting chain right across the country from New York to Los Angeles, with branches into the more thickly populated parts of the country such as Illinois and the Middle West in general. The links of the chain consist partly of runs of coaxial cable (some very long) and partly of radio relays. The system now in operation is extensive; it should cover a very considerable part of that large country within two or three years, at the present rate of progress.

Reflections from the Moon

A report in the march number of the O.I.R. Bulletin gives some interesting particulars of work done last year by the Australian Council for Scientific and Industrial Research on radio echoes from the moon. Transmissions were made, by means of a rhombic aerial system, from the short-wave station at Shepparton (about roo miles almost due north of Melbourne) reception taking place at Hornsby, some 350 miles away in New South Wales. The frequencies employed were 17.84 and $2 \mathrm{I} .54 \mathrm{Mc} / \mathrm{s}$ and the transmissions were in the form of pulses. On some occasions sets of three o.Isecond pulses were sent out; on others single 2.2 -second pulses were used. As the aerial system was fixed, transmissions could be made only when the moon was in the right position. They were further limited to times when the F_{2} layer was in a suitable condition to allow the radiation to penetrate it. And overriding both these considerations was the fact that the Shepparton station was available for experimental purposes only at times when it was not required for broadcasting. All conditions, however, were ful-
filled on the nights of November 7 th, 8 th, 9 th and 1oth, when most successful results were obtained. The echoes were received with a delay of 2.66 seconds, which, taking the velocity of electromagnetic waves in round figures at 186,200 miles a second, makes the distance of the moon from us at that time some 247,640 miles. One very interesting phenomenon was observed: the received signals were tuned in on a frequency about $50 \mathrm{c} / \mathrm{s}$ above that of the transmissions, due to the Doppler Effect.

Television Test Pattern

The new television test pat. tern seems to me to be quite firstrate from everyone's point of view except possibly that of the fellow who is trying to dispose of a duc tclevisor. It must be of great valus to designers and back-room boys servicemen can spot a large variety of faults and wrong adjustments in the twinkling of an eye; the would be televiewer can check the performances of the set he thinks of buying. It says a great deal for the high standard of British televisiot: that our manufacturers should not only have co-operated with the B.B.C. in designing this very exacting test pattern, but should also be anxious to have it broadcast for anyone to receive. One effect rather unexpected in a modern televisor is shown up, by the way, in no uncertain manner if it is there. This is "pin-cushion" distortion (concavity of the edges of the raster) which leapt to the eye when a friend and I tried his home-made set, incorporating a "disposals" C.R.T., on the pattern a few mornings ago.

Sound Recording Manual

 Hints and Tips for BeginnersNTEWCOMERS to the art of disc recording will find interest and instruction in a handbook "Sound Recording by the Direct Disc Method,"' by D. O'C. Roe, issued by Birmingham Sound Reproducers, Claremont Street, Old Hill, Staffs. In addition to operating instructions for the B.S.R. Type DR33 recorder and ARI_{5} amplifier there is much useful general information including hints and tips on recording practice. studio acoustics and the arrangement of performers and microphones and the addresses of societies concerned with questions of copyright.

The booklet is well printed and illustrated and costs 5 s .

UTniversally used by reason of their complete reliability, these signal fittings are found on all types of electronic and domestic electrical apparatus. The types illustrated are for low-voltage use, and are designed for M.E.S.-cap and similar lamp bulbs. Models are available with one pole "live" to frame, or with frame "dead" (when max. [peak] wkg. V. to E. $=250,500 \mathrm{~V}$. peak test). Internal lampholding arrangements ensure permanent trouble-free contacting. Types also manufactured suitable for M.B.C. and S.E.S. lamps.

Enquiries for direct-and indirectexport are particularly invited.

A:F. BULSIN \& CO. ETD. BYE-PASS RD. BARKING
Telephone: RIPpleway 3474 (5 lines)

recent inventions

A Selection of the More Interesting Radio Developments

CATHODE-RAY INDICATORS

WHEN rectified, as distinct from alternating, voltages are applied to the deflecting plates of a cathoderay tube, as, for instance, in automatic direction finding, the indicating spot is moved to some fixed point on the screen, and the direction is then given by the imaginary line joining the spot to its normal or zero position, which is often difficult to identify accurately.
According to the invention, the charging voltages are applied to each of the deflecting plates through equal resistances of high value, and the plates are coupled to a common earthing point through separate condensers which are periodically shorted, say, at $50 \mathrm{c} / \mathrm{s}$, by electronic switching. The fixed-spot indication is thus converted into a permanently visible straight-line trace, the length and orientation of which is determined by the steady value of the original deflecting voltages.

Standard Telephones \& Cables, I.td. and R.F. Cleaver. Application date, April 14th, 1945. No. 590260.

RECORD REPRODUCTION

THE movements of the stylus are applied to de-tune the circuits of a pair of diode rectifiers which are coupled to a radio-frequency oscillator. The arrangement develops an audiofrequency output voltage that is directly proportional to the mechanical drive; it also automatically suppresses any parasitic noises or disturbances that may arise in the R.F. circuits.

A crystal-controlled valve V supplies R.F. oscillations to the two input circuits of a pair of diodes D, DI, which are connected to a common load resistance R. Both circuits are tuned by a split condenser C. This has a flexible electrode which is directly
and is fed to an audio-frequency amplifier (not shown). Any fluctuations originating on the R.F. side of the transformer T are opposed after rectification, and mutually cancel out.

Radio Corporation of America. Convention date (U.S.A.) March 29th, 1944. No. 589834 .

WAVE GUIDE FILTERS

GLECTROMAGNETIC energy can E, flow through a wave guide either as a TM wave having a transverse magnetic and a longitudinal electric field, or as a TE wave with a transverse electric and a longitudinal magnetic field the former induces longitudinal, and the latter transverse currents in the walls of the tube. Both types of wave are usually present initially in the guide, and the inven-

Filter designed to pass transverse magnetic waves.
tion describes means for filtering out one from the other.
As shown, a series of radial quarterwave slots S are cut in the thickness of the walls, extending for a full wavelength, so as to present a substantially infinite impedance to the flow of transverse current. This blocks the passage

driven or vibrated by the stylus S .

- The circuits are therefore simultaneously de-tuned, in push-pull fashion, and a corresponding summation voltage appears across the load resistance.
of the TE wave. In width, the slots are too narrow to have any noticeable effect on the flow of axial currents, so that the TM wave is not attenuated. The slots may be filled with powdered

> The British abstracts published here are prepared with the permission of the Controller of H.M. Stationery Office, from specifications obtainable at the Patent Office, 25, Soulhampton Buildings, London, W.C.2, price 1/- each.
graphite to dissipate the energy of the standing wave.

A single circular slot, a quarter wave in depth, and carried peripherally around the guide, will pass the TE type.

Western Electric Co., Inc. Convention date (U.S.A.), April 28th, 1944 No. 590302.

PIEZO-ELECTRIC REACTANCES

APIEZO-ELECTRIC capacitor is held, by thermostatic control, at its critical or Curie-point temperature, where the dielectric is found to show maximum change in capacitance for a given variation in the applied voltage. The arrangement can be used as a fast-acting reactance for frequency modulation, when shunted across the inner and outer conductors of a tuned coaxial-line element coupled to the output circuit of a U.H.F. triode oscillator.
A convenient dielectric is standard Rochelle salt, which has a Curie-point temperature of $24^{\circ} \mathrm{C}$. Another alternative is the same salt crystallized from heavy water (deuterium oxide) this crystal has a critical temperature of $35^{\circ} \mathrm{C}$., which can be held by a very simple form of thermostatic control.
Western Electric Co., Inc. Convention date (U.S.A.) October 21st, 1943. No. 589659.

LARGE-SCALE TELEVISION

\lceil HE screen of a cathode-ray tube is coated with caesium, which is maintained at such a temperature that the extra heat produced by the impact of the scanning beam is sufficient to produce a momentary evaporation of the metal from point to point along the line of scan. The extent of evaporation increases with the power of the beam as modulated by the received signals, thus varying the transparency of the screen to an external source of light and allowing the picture to be projected outside the bulb of the cathode-ray tube, where it is not restricted in size.
Local cooling is applied to ensure that the volatile metal is deposited back on the screen, in the rear of the scanning beam. In addition, the whole of the cathode-ray tube, except the screen, is enclosed in an electric oven, which is maintained at a sufficiently high temperature to prevent undesirable condensation.
Compania para la Fabrication de Contadores y Material Industrial S.A. and P. Viteau. Application date June 22nd, 1944. No. 587525.

This "ADVANCE " Signal Generator is of entirely new design and embodies many novel constructional features. It is compact in size, light in weight, and can be operated either from A.C. Power Supply or low-voltage high-trequency supplies.

An RL18 valve is employed as a colpitts oscillator, which may be Plate modulated by a 1,000 -cycle sine wave oscillator, or grid modulated by a $50 / 50$ square wave. Both types of modulation are internal, and selected by a switch. The oscillator section is triple shielded and external stray magnetic and electrostatic fields are negligible. Sir coils are used to cover the range, and they are mounted in a coil turret of special design. The output from the R.F. oscillator is led to an inductive slide wire, where it is monitored by an EA50 diode. The slide wire leeds a $75-0 \mathrm{hm} 5$-step decade attenuator of new design. The output voltage is taken from the end of a $75-\mathrm{ohm}$ matched transmission line.

The instrument is totally enclosed in a grey enamelled steel case with a detachable hinged lid for use during transport.

Price $£ 80$
Dellvery ex Stock.
Write for descriptive Leaflet.
ADVANCE COMPONENTS, LTD. BACK ROAD, SHERNHALL STREET, WALTHAMSTOW, LONDON, E.I7.

Telephone: Larkswood 4366-7

Marconi Quartz Crystals are made to satisfy the highest possible standards because nothing but the highest standards satisfy the designers of Marconi equipment.
Mounted in an evacuated glass envelope, with a Type B7G base, Marconi Crystals can now be supplied to all Manufacturers in the following ranges:-
$75-150 \mathrm{kc} / \mathrm{s}$
$200-500 \mathrm{kc} / \mathrm{s}$

2-15 Mc/s
12-35 Mc/s (overtone plates)
Frequency Tolerance . . $\cdot 01 \%$ normal $.005 \%$ maximum
Temperature Coefficient . . 2 parts in 10^{6} per degree \mathbf{C}.
Enquiries are also invited for other types to suit specific requirements.

Marconi

MARCONI'S WIRELESS TELEGRAPH COMPANY LIMITED (DEPT. B), MARCONI HOUSE, CHELMSFORD, ESSEX

MAZDA for Dependability

SP. 61

A.C. MAINS H.F. PENTODE

BASINGS

Top Cap. Control Grid.
Viewed from the free end of the base.

RATING

Heater Voltoge
Heater Current (Amps.)
Maximum Anode Voltage
Maximum Screen Voltage
*Mutual Conductance (mA/V)

* Taken ot $V a=200 \mathrm{v} ; \vee \mathrm{g} 2=200 \mathrm{v} ; \mathrm{Vg} 1=-1.5$

 - MAZDA VALVE Troe SP GI.

TYPICAL OPERATION

Anode Voltage	-	200	200	250
Screen Voltage	$250 \dagger$	200	200	250
Grid Voltage	1.0	1.8	1.5	2.1
Anode Current (mA)	22†	8.5	10.9	11.1
Screen Current (mA)	5.5 \dagger	2.1	2.7	2.8
Mutual Conductance (mA/V)	-	7.6	8.5	8.4
Input Capacity Working ($\mu \mu \mathrm{F}$.)	-	15	15.25	15.25
Change in Input Capocity produced by brasing valve to cut-off ΔC)				
($\mu \mu \mathrm{F}$.$)$	-	3.75	4.0	3.7
Self Bias Resistance (ohms)	37	170	110	150
Input Loss ot 45 Mc . (ohms)	-	2,500	2,200	2,300

\dagger Maximum permissible rating as Video Output valve, anode volts must not exceed 200 volts. Grid cothode circuit resistance should not appreciably exceed 5,000 ohms.

INTER-ELECTRODE CAPACITIES

Price: $10 / 6$ plus $3 / 5$ purchase tax

RADIO VALVES AND CATHODE RAY TUBES

THE EDISON SWAN ELECTRIC CO. LTD., 155 CHARING CROSS ROAD, LONDON. W.C. 2

The

STYLUS UNIT

of the

NEW DECCA

 firr pick-upincorjporated in the

"DECOLA"

de luxe
ELECTRIC RECORD
REPRODUCER

BUBBAR BONDARS GDMITAD
 FLEXILANT WORKS. DUNSTABLE•BEDS ANCHVEERS AN RUBHEN HONHED FO MHTMI TELEPIIONE: DUNSTABIE, 8U3-4.5

Emi. TRAINING
 TOR CAREERS IN ELECTRONICS

An E.M.I. correspondence course, brings students into direct contact with scientists of Britain's Largest Electronic organisation.
$\left.\begin{array}{l}\text { BASIC RADIO or } \\ \text { BASICTELEVISION }\end{array}\right\}$ for $\left\{\begin{array}{l}\text { City and Guilds } \\ \text { Telecom. Finals. } \\ \text { A.M.Brit.I.R.E. }\end{array}\right.$
(Ready this Autumn)
Intermediate Maths. $\}$ for $\{$ City and Guilds $\left.\begin{array}{l}\text { Higher Maths. } \\ \text { Advanced Maths. }\end{array}\right\}$ for $\left\{\begin{array}{l}\text { City and Guilds } \\ \text { Telecom. Finals. }\end{array}\right.$ Industrial Electronics

Also FULL TIME COURSES

Whatever course is chosen, the E.M.I. staff give first hand up-to-the-minute knowledge of the application of electronics to industry. Write for full details to:-

The Principal: Professor H. F. TREWMAN, M.A. (Cantab) M.I.E.E., M.I.Mech.E., M.Brit.I.R.E.
E.M.I. INSTITUTES LTD

Dept. 16, 43, Grove Park Rd., London, W. 4 E. 58 a

MODEL WX

AUTOMATIC COIL WINDING MACHINES

FOR PILE OR WEAVE WOUND COILS Particulars of this new improved model and other machines on application.
ETA
$\underset{\text { (tecestren }}{\mathrm{O}} \mathrm{O} \mathrm{O} \mathrm{L}$

16 $\frac{1}{2}$ METCALF STREET, LEICESTER.
'Phone-5386.

Pioncers of the familiar bakelite terminal method of sealing condensers, T.C.C. have now developed a new method of complete hermetic sealing by means of Neoprene bungs through which are brought soldering wires/tags or insulated flexible leads. Typical types of condensers to which this construction is applicable are illustrated above. Obvious applications are paper condensers for telephones, fluorescent lighting, ignition, interference suppression, flash photo-graphy, etc., etc. Considerable economies are made possible by the use of this technique, and we shall be pleased to put forward designs and prices against enquiries where quantity production is warranted.

Ahead of all others!

S. G. BROWN, Type 'K' Moving Coil Headphones, with the following outstanding characteristics, supply that High Fidelity Reproduction demanded for DX work, monitoring and laboratory purposes, etc.

NOTE THESE CHARACTERISTICS. D.C. RESISTANCE, 47 Onms. IMPEDANCE, 52 ohms at 1,000 c.p.s.

SENSITIVITY, 1.2×10.23 Watts at $1 \mathrm{kc} .=.0002 \mathrm{Dyne} / \mathrm{cm}^{2}$

Descriptive titerature on request.

$£ 5.5 .0$ per pali.

Supplies now available.
For details of other S. G. Brown Headphones (prices from 30/to 63/.) ask for illustrated Brochure "W.W."

HEADPHONES WHICH UPHOLD BRITISH PRESTIGE.
Phone
ACOrn 5021

S.6.13wwn. Ktd.

VICTORIA RD., NORTH ACTON, LONDON, W. 3

Here is the Raytheon valve that is the heart of almost every Deaf Aid in use roday, In spite of the complex construction within this tiny tube, Raytheon's unique precision-electronic assembly methods have resulted in
valves so uniform and dependable that the Deaf Aid user no longer gives them a thought. ... Is it any wonder that Deaf Aid makers and users rely so universally on valves bearing the name RAYTHEON!

For decailed information on Raytheon Deaf Aid Valves write
to Submarine Signal Company (London) Led., Arcillery House,
Artllery Row, London, S.W.I. England.

RAYTMEON MANUFACTURING COMPANT
international division
60 EAST 42nd STREET
NEW YORK 17, N.Y., U.S.A.
"Monobolt" speakers, the first of the new Truvox radio range, are now available from all radio dealers. Quality enthusiasts, and all those who want "the best," will welcome this news. If you require fuller details than are given below-a postcard will bring them.

Model	50	5in.				
Mod	BX 52	Sin.	10,000	lin	¢	
Mode	BX 60	61 $\frac{1}{2}$	8,500	lin	¢	
Model	BX 62	61 $\frac{1}{2}$ in	10,000	line	E1 6	
Model	BX 80	8 in	8,000	in	El	
od	BX 82	8 in .	10,500	line	El 10	
del	BX 100	10 in .	8,000	line	El 10	
Model	BX 102	10 in	0,500	lin		

TRITVOX

TRUVOX ENGINEERING CO., LTD., EXHIBITION GROUNDS, WEMBLEY, MIDDLESEX.

ตตm™ SOUND SERVIGE
THE COMPLETE SERVICE
FOR SOUND RECORDING
AND REPRODUCTION Ł Mobite, static and specialised recording units. * Complete Wire Recorders, Recording and Wipeoff Units.
\star Recording Amplifiers.
\star Moving Coil and Crystal Microphones.

* Sapphire cutting and reproducing stylii.
* Blank recording discs from 5 in . to 17 in ., Single or Double sided.
* Lightweight, moving iron, permanent sapphire and moving coil pick-ups.
* A comprehensive range of accessories to meet every requirement of the sound recording engineer.
$\star \star$ And our latest development (of special interest to users of sapphire and delicate pick-ups)-THE SIMTROL. This is a controlled micro-movement easily fitted for use with any type of pick-up.

B. ․
see our Stanal H57
OLYMPIA SIMON SOUND SERVICE, Recorder House, 48/50, George St., Portman Square, London, W.1.

CABLES: Simsale, London.

telegrams : Simsole, Wesdo, London.
TELEPHONE: Welbeck 2371/2.

M. R. SUPPLIES Ltal

ofler only selected and brand new mater ial which is sure to give complete satisfaction All orders handled with the utmost diligence and deapaich. All prices nett. BOTEBRMEL AMPLIFIRRS. Very special exclusive cffer of two currently listed models at attractive prices. Operation $220 / 240 \mathrm{v}$. A.C. Model VR/2, output 5 watis (two 42 ralves in p.p.) Inputs ior crystal mic. and any plekup, with switch-over Output matched to 214 ohms. Open chassis style, size 12 in. by 7 inin. by 5tn. Complete with δ vaives, read Y for use, (List $£ 25$), limlted number at $£ 12 / 15 /=$ (despatch $5 /-$). Also Model HO/808, output 9 watts (two ELS3 in push-pull). Inputs for cryetal mic. and any pickop with electronic mixing and tone controla. Output matched to $21,5,7 \frac{1}{2}, 15$ and 500 ohms. Overall gain 113 db. Response within 2 db irom 50 to $10,000 \mathrm{c} / \mathrm{s}$. In crystaline findshed steel cabinet $11 \frac{1}{2}$ in. by $7 \frac{1 \mathrm{in}}{} \mathrm{in}$. by $6 \frac{1}{2} \mathrm{in}$. Complete With 5 valves, ready for use, (List 435), limited number at $£ 21$ (des. B/F). for for all wave-lengths. $200 / 240 \mathrm{~s}$. D.C. to $200 / 240$ F. 50 c., 100 watts, 29 (des. $2 /-$) 200 watts, $\{14$ (des. p. train 3/6) NOTE :-For television we recommend the 200 Watt 76 cycle mocel at s14, many arready in use. ROTAKY CONVERTERB (ex of 750 gete duty. Fully enclosed, 19 in . by 11 in. by 9 in . Weight approx. 100 lbs $£ 10$ oserf. pd.
ANODE CONFERTERS (Rotary Transformers). This is the really usefulone. Input 12 v. D. o, output 250 v. $125 \mathrm{~m} . \mathrm{a}$. D.O. Ideal for mobile radio and smadl amplifiers, etc. In makers' cartons, $19 / 6$.
PIEZO-ELECTBIC HEADPHONES. (Rothermel) Exceptlonal lhaited offer. With adjusteble headluande. Reaponse $60 / 10,000 \mathrm{cfs}$. Welght 6 oz. Used in normal way Each earpiecels a perfect plezu-crystal micr ophone without alteration. (list $43 / 10 /-$ A fow brand new pairs ot 3246.
BATTERY CEARGERS. (EX Air Ministry). Operation 200/260 v. A.C. Output 5 smpm . it 15 . D.O. Metal (STO) Rectified, fitted sliding resistance, $0 / 6$ smmeter ruse, lead, otc., ready for use. For charging all batteriea 2 garage, Te ateel hothing 151 y . by 13 in . by 7 in ., with wall mounting luge, 87/15/(dea. $\delta /-$)
P.A. SPRAKERA. Excoptlonal ofter of 8 watt Presfure Units, P.M. M/Coil, with standard P.A. thread to pulit sll types of horn. 15 ohms imp. Best makera, $57 / 6$.
 mount Fith pillar, \&resi2/6. Steel Tripods for these and all other P.A. Speakers, mount with pillar, softantially made sind rigid under sll condithons, $55 /-($ des. $3 / 6$). EIGE-FIDELITY BPEARERS. We conflently recommend these two very gatig* factory speakera. Dia. 12in. imp. 16 ohms. The new B.T.H. "R.K." P.M. m/coll with paracurve cone, $£ 6 / 15 /$-(des, 2/6). The new Gramptap model 3512/15, £6/10/(des.2/6). Of thesmaller models we consider the Graunplan G. 129 the bentproposition Dta, oin, handling 7 watta, inp. 2 ohnas or 15 ohms (please state which). Response $50 / 10,000$ e/8, 40%.
 j in. shaft. Many nses in lab. and home, 15 -. Suitablestep-down mains Transformers pitm : $200 / 240 \mathrm{\nabla}$. Bec
S\% WEROROUS ELECTRIC CLOCK MOVEMENTS. 200/250 v. 50 c . Fitted spindle for hours, min. and secs. Centre-bush fizfog. With dust cover and flez, the perfect movement for the home constructar, $37 / 6$
POW IERNL SOLONOIDS. Operazion 24v. D.C., fitted Bowden lead arranged for opprox. 1 lm pull of about 20 fbe , $15 /{ }^{-1}$
selection for enthersonly. Range 1.6 to 300 and others) Model TF390 (varions). A selection for eathersonly. Range 1.6 to 300 mofe. Tested, perfect. Priceofrom 225 to
(Please include suffient for despatch).
M. R. 8UPPLIE8 Lid., 68, Now Oxdord Streat, London, W.c. 1

Telephone: MUSeum 2958

UNIVERSRLIMPEDANCEBRIDGE
MODEL UB 202
This is a self contained universal bridge which measures resistance at DC. Capacity and Inductance at 1000 Cycles. The necessary bridge voltage and null detectors are incorporated in the instrument. Measurements in condensers can be carried out with applied polarising voltage and inductances can be measured with superimposed DC.

Resistance Range . 01 ohm to 1 megohm Capacity Range 10 pf. to 1000 mFds . Inductance Range $10 \mu \mathrm{H}$. to 1000 Henries

For particulars of this and our full range
BRITISH PHYSICAL LABORATORIES
HOUSEBOAT WORKS, RADLETT, HERTS
Telephone: Radlett 5674-5-6

NITROGOL? apacitors

THE STANDARD OF TECHNICAL EXCELLENCE, QUALITY AND RELIABILITY

The most modern development in Paper Dielectric Capacitors. Subjected to a new and highly specialised process, with extended foil construction and a mineral base impregnant, they have low power factor, low inductance, uniformity of dielectric and small temperature gradient.

They withstand diversity of temperature, humidity and vibration, making them suitable for use in the most arduous conditions
Manufactured in rectangular metal containers for all normal purposes and in shallow containers for under-chassis mounting, they are fitted with ceramic terminals.

Special cylindrical and rectangular designs are available for Television and other small-ripple high-tension applications.
MAKERS OF THE WORLD'S FINEST CAPACITORS

B. I. F. STAND No. H. 45.

[^8]

For every need of consistently accurate electrical measurement, there is a Pullin Instrument.

Miniature Industrial Portable Laboratory Pattern Single or Multi-range
Send your instrumentation problems to us.

MEASURING INSTRUMENTS (PULLIN) LTD
Address all enquiries to Dept. J, Electrin Works.
Winchester Street, Acton, London, W.3. Teleghone: Acorn 4651-4

THIS LITTLE UNIT BEATS THEM ALL!

Thettadley MIULTICOM for COMPLETE INTERNAL COMMUNICATION

HADLEY engineers " scoop" the trade with this new intercom, the first of its kind to provide complete intercommunication between all points.
Secret is the new design auto-control unit, housed out of sight, which cuts the size of the desk unit down to a $6^{\prime \prime} \times 4^{\prime \prime}$ cabinet-a marvel in miniature.
Every desk unit has direct contact with all other units while executives can have priority. THE HADLEY INTERCOMMUNICATOR provides for two way calling and communication between master unit and any or all of the sub-stations and also incorporates the novel feature of a desk radio which can be relayed to the sub-stations.
THE HADLEY INDUSTRIAL UNIT proved to be well in advance of any similar equipment. Provides all facilities for 'Staff Location,' 'Music for the Workers,' 'Time Signals,' etc.

All Hadley Equipments are available on Cash Purchase or Rental Maintenance terms.
Trade and overseas enquiries invited. Literature on request.

BEARWOOD ROAD, SMETHWICK, STAFFS.

HYMEG

HIGH-SPEED PRODUCTION

 further reduced processing times to a fraction of those previously believed necessary.Often faster than infra-red baking with none of the defects, reduced handling, absence of special jigs, with complete freedom from blistering, bubbling and porosity, are some of the advantages claimed and substantiated for HYMEG High Speed Production methods.

HYMEGLAS

GLASS FIBRE INSULATION SYSTEM

HYMEG Synthetic Insulating Varnishes are recognised and widely used for their mechanical rigidity, improvenent of electrical properties of windings ; heat, moisture, oil, acid and alkali resistance as well as for the considerably reduced toving time necessary

After much research in our laboratories and in conjunction with many well-known specialis manufacturers, we have now evolved the Hymeglas system of Insulation which comprises modifications of Hymeg as used for coil impregnation to meet the varying conditions applying to each field of manufacture.
This integrated system of development is successful in enabling machines to be designed and operated without weak links in the chain of insulation below $200^{\circ} \mathrm{C}$. Thus the fullest advantage is taken of modern glass fibre insulation by providing a degree of bonding and insulation at every point in which the uniting of Hymeg impregnation with the Hymeg as used for subsidiary insulations gives a solid homogeneous winding of equally efficient characteristics and heat resistance throughout.
Hymeglas therefore virtually eliminates any risk of insulation failure and enables motors and the like to operate under abnormal conditions for long periods without risk of electrical breakdown.
Due to the excellent space factor of glass fibre as compared with the more usual asbestos and mica Class B insulations, it is often possible in redesigning with the Hymeglas system to employ larger copper sections with well-known advantages.

The Berger Technical Service-the research work of which produced "HYMEG '" and "HYMEGLAS"
is available to advise manufacturers on all problems of insulation. Get in touch now with-
LEWIS BERGER \& SONS LTD. (Est. 1760)
35, BERKELEY SQUARE, LONDNN. W.1.
Telephone: MAYfair 9171.
MANUFACTURERS OF HIGH - PERFORMANCE INSULATING VARNISHES AND ENAMELS

Hadionart 'Special Difers'

BRAND NEW HEAVY DUTY L.F. CHOKES.

 Fully shrouded in cast aluminium rectangular "Pots."
BRAND NEW H.V. TRANSFORMERS

Primary 115 volt, sec. $1250-0-1250 \mathrm{v} .200 \mathrm{~m} / \mathrm{A}$. Connect two of these in series with secondaries in parallel for $1250-0.1250 \mathrm{v} .400 \mathrm{~m} / \mathrm{A}$ or secondaries in series for 2500-0-2500 v. $200 \mathrm{~m} / \mathrm{A}$
(INCLUDE 5/- FOR CARRIAGE ON ORDERS FOR ALL THE ABOVE.).
H.F. CHOKES, Pie wound. $250 \mathrm{~m} / \mathrm{A}$ Tx. type, $1 / 9$ each, $18 /$ - dozen $100 \mathrm{~m} / \mathrm{a}$ Rx., type $1 / 6$ each, $15 /$ - dozen.
Screened Valve Caps (English type), 6d. each, 4/6 dozen
Yaxley Switches (small type), 2-pole 6-way, 2/6 each.
Tuning Condensers, small, 20 pf. double spaced, ceramic insulation, double end frames, 3/6 each.
CO-AX CABLE. Genuine 72 ohms, now reduced to : 童in. dia., I/- per yard ; tin. dia., 9d. per yard.
CO-AX PLUGS for $\frac{1}{2} i n$. dia. cable, 2/e each. Sockets for $\frac{1}{2}$ in. plugs, 1/6 each.
CO-AX PYE PLUGS for $\frac{1}{4}$ in. dia. cable, 9 d. each. Sockets for $\frac{1}{4}$. Pye Plugs, 6d. each.
RADIATOR THERMOMETERS. These make excellent backwards reading meters for "R " Meters connected in cathode or plate of I.F Approx. 750 micro-amp movement. Price $3 /$-each, $30 /$ - dozen.
Best quality Flexible Couplers, litin. dia. Price l/3 each. New G.P.O. type Relays, 500 ohm coil 4-pole make. Price $2 / 6$ each. $0-1 \mathrm{~m} / \mathrm{A}$ Meters, $2 \frac{1}{2}$ in. dia. flush mounting, in desk stand, 21/- each.
15 WATT MOBILE AMPLIFIERS. 6N7, 6N7, 2 6L6's, with built-in rotary converter. For operation off 12 v. D.C.
Folded Horn Speakers for above
Carriage and packing on Amplifier or Speaker, 10/-each.

RADIOMART

48, HOLLOWAY HEAD, BIRMINGHAM,

The Generol Electric Co., Ltd., Mognet House, Kingsway, W.C.2.

ON CONTAINERS.
Ever considered how important containers are to so many Industries ? Just look at these containers and imagine what would happen if there were no such things.

Dwell upon madam's temper if she was denied the exquisite pleasure of encasing her figure in armour; what indeed would be lost to the world of gourmets if lobster a la what you please vanished from the a la carte; think of all the funny tales which never would have been if bangers were just a shapeless mass and not their customary disciplined, delectable selves. Above all, think how the further progress of Electronics would have been halted if the new Parmeko Mercury series in their seamless containers had never been developed to operate under any abnormal conditions

PARMEKO OF LEICESTER Makers of Transforners.

FOR THE

RADIO SERVICEMAI DEALER AND OWNE
The man who enrols for an I.C.: Radio Course Iearnsradio thorought completely, practically. When r earns his Diploma, he will KNOV radio. We are not content merely t teach the principles of radio, we war to show our students how to appi that training in practical, every-da radio service work. We train ther to be successful.
Write to the I.C.S. Advisory Dept. stating you requirements. Our advice is tree.
You may use this coupon.
INTERNATIONAL CORRESPONDENCE SCHOOL Ltd
DEPT. 38, INTERNATIONAL BUILDINGS, KINGSWAY, LONDON, W.C.
Please explain fully about your instruction in the subject marked X.
Complete Radio Engineering

And the following Radio Examinations:-
British Institution of Radio Engineers
P.M.G. Certificates for Wireless Operators

City and Guilds Telecommunications
Wireless Operators and Wireless Mechanics, R.A.F.
I.C.S. students for Examinations are coached til! successful

"You're CERTAIN to get it at ARTHURS!"

\star VALVES : We have probably the largest Stock of valves in the Country. Let us know, our requirements.
AVOMETERS. NOW IN STOCK. AVOMETER, Model 7 $\boldsymbol{\leq 1 9} 100$ AVOMETER, Model $40 \ldots . .$. $\mathbf{1 7} 100$ VALVE TESTER (Complete)......... 1616100 TEST BRIDGE fll 0 AVOMINOR, Universal Model...... $£ 8100$ AVOMINOR, D.C. Model..... ¢4 40 SIGNAL GENERATORS, A.C.......flis 0

TAYLORS' METERS. | COMPLLTE RANGE |
| :---: |
| Now IN STOCK. |

All orders sens
STAGE EQUIPMENT
Terms C.O.D. by return of Post. PROJECTOR LAMPS or cash with order.
London's Oldest Leading Radio Dealers.

Gray House, 150, Charing Cross Rd.,
London, W.C. 2
TEMDle Bar 5833/4.
Our Only Address:
ELECTRICAL, TELEVISION \& RADIO ENGINEERS.

Classics, Balladis, Swing or Jive whatever vour music tastes-you'll get more infinitely more enjoyment from your records if you play them on
the new Collaro "De Luxe" Microgram!

Hear your records as they were meant to be heard . . . enjoy the pure, mellow tone . . . the faithful, sparkling reproduction . . as sharply defined, and as clearly recorded as your reflection in a new cut mirror! Without a doubt, the new Collaro "De Luxe" Microgram is one of the world's finest electric gramo-phones-and it's portable!

Outstanding design, first class workmanship... the new Collaro lightweight Crystal Pick-up . . . automatic stop. . $6 \frac{1}{2}^{\prime \prime}$ Speaker and handsome imitation lizard-skin case with finest chromium fittings-see it . . admire it, but above all, ask to HEAR the Microgram at your dealer's showroom today!

Should your usual dealer not have a "DE
LUXE" Microgram in stock when you call just drop a line to Collaro, Ltd. for illustrated literature which describes the Microgram in detail.

RETAIL PRICES
"Deluxe" model $£ 19190$
Plus Purchase Tax, $£ 698$
standard model $£ 16160$
Plus Purchase Tax, 4593 Both the "DE LUXE" and Standard Models are suitably connected for A.C. mains supply of $200-250$ volts at $50 / 60$ cycles.

Portable Electric Gramophone

NEW EDDYSTONE TRANSMITTING CONDENSERS

A new range of Eddystone transmitting condensers is now available for immediate delivery. A standard type of construction is employed in all three, the ceramic end plates being $2 \frac{1}{2} \mathrm{in}$. square. Losses are extremely small.
The metal mounting plates supplied provide alternative methods of fittingeither directly to a metal chassis or on small stand-off insulators. The former method is satisfactory for C.W. operation with up 1,000 D.C. anode volts or for telephony with somewhat lower anode volts. If higher voltages are employed, the second method is preferable, since the condenser is then subject to the R.F. voltages only. The rotor plates should be connected to the chassis via a .001 voltage
fixed condenser.
All three are of split stator type, and are therefore suitable for balanced and push-pull circuits. By strapping the stator plates together, additional capacity -
The Cat. No. 611 is particularly suitable for use with modern low capacity triodes such as the T20, 4304, and 35T. The buitt-in neutralising condensers enable a very
compact and efficient push-pull amplifier to be constructed.

Cat. No.	Cap. per Section.	Effretive Capacity	As Single ended.
$\begin{aligned} & 611 \\ & 612 \\ & \hline \end{aligned}$	$\begin{aligned} & 25 \mathrm{pF} \\ & 50 \mathrm{pF} \end{aligned}$		(100 $\begin{gathered}50 \mathrm{pF} \\ 100\end{gathered}$

Please order from your Registered "EDDYSTONE "Retaiter, as we do not supply direct.
STRATTON \& Co., Ltd

EDDYSTONE WORKS

A compact, highly sensitive instrument for measuring Insulation Properties and Leakage Resistance without destructive breakdown; also suitable for Moisture Determinations. A guard circuit is provided for proper elimination of surface leakages.
Range : $0.1 \mathrm{M} \Omega$ to $10,000 \mathrm{M} \Omega$:: Test Potential :Less than 50 volts. l'ower supply : Self-contained dry batteries :: Size : $44^{\prime \prime} \times 7 \mathbf{z a}^{\prime \prime} \times 4^{\prime \prime}$ deep. Technical data sent on request to: DAWE INSTRUMENTS LTD 130, Uxbridge road, Hanwell, London, W. 7 :: Ealing 62 is Visit our Stand at the B.I.F. (S.I.M.A. section)

Denco - Cbassis

DR 21. For A.C. mains, incorporating the well-known CT 6 Turret (see April W.W.), 5 bands, complete coverage, permeability tuned IF's.
4 valves, plus rectifier and magic eye, completely aligned and ready to switch on
(less loudspeaker) \quad £I5 $\mathbf{0} \mathbf{0}$ P.T. $£ 5 \quad 3 \quad 5$

Ask your stockist for details of the Denco range of receivers or components (or write us in case of difficulty).

DENCO (CLACTON) LTD., OLD ROAD, CLACTON, ESSEX

GONDON CENTRAL Tiendio storise

Government Surplus-Immediate Delivery from Stock

To take 16 mm . film. Fixed focus lens approx. 5 cra., $\mathbf{f} / 3.5$. The illustration shows loading chamber partly open. In metal case. Dimensions $12 \times 3 \frac{1}{2} \times 2$ ins. With 24 v . motor drive $57 / 6$ With 12 v . drive, s

NEW MILNES H.T. UNITS (Everlasting) 120 v. 60 ma. Will charge from 6 v. $67 / 6$
accumulator. For Callers Only.
WAVEMETER Wil91. With frequency chart

PIVOTED FLUXMETER

Carr. \& pkg. $10 / 6$ \&17.10.0
7-VALVE U.H.F. RECEIVER
Type R1147A (with 4 Acorn Valves)
Range approx. 200 megacycles

A Real Opportunity!

Beautifully constructed and fitted with micro condenser drive. Valve types : two EF36, one EBC 33 , three 954 , one 955 . In black metal case, $8 \times 7 \times 6 i n$. Set complete with valves. Carr. paid.

Range $31 \mathrm{Mc} / \mathrm{s}$ to $90 \mathrm{Kc} / \mathrm{s}, 9$ Plug-in coils, 7 valves and rectifier, variable selectivity, B.F.O. stand-by switch, A.V.C. switch, band-spread dial, valve check meter. In heavy black crackle finished steel cabinet with chrome fittings. Complete with 290-250 v. A.C. Power Supply Unit.
Carriage and packing $17 / 6$ extra.............. Carriage and packing $17 / 6$ extra.

10-VALVE COMMUNICATION RECEIVER-Type R1155

 delivery f

These sets are as new, Need only a power pack for immediate use (see "W.W." July, 1946). Freq. range $7.5 \mathrm{mc} / \mathrm{s} 75 \mathrm{kc} / \mathrm{s}$ in five wavebands. Complete with 10 valves including magic eye. Enclosed in metal case. Every $£ 12.10 .0$ receiver is aerial tested. Set only... $\mathbf{2 1 2 . 1 0 . 0}$ Complete with Power Pack and Loudspeaker, $£ 20$ for A.C. mains, 200-250 v.

$$
\text { (Carr. and pkg. } 10 / 6 \text { extra). }
$$

FREE with each receiver ! Complete ofrcuit, degeription and molfflcations for civil use, reprinted from "w.W." Juiy, 1946.

VISUAL UNITS

With 4in Cathode Ray Tube, two EF50 and two VR54 valves, potentiometers, etc. Complete on chassis $15 \times 5 \frac{1}{2} \times 5 \mathrm{in}$. Carr. and pkg. 15/* $42 / 6$ extra.

10 ;- refunded on return of empty case.

2-VOLT POWER PACKS

VIBRATORS. 2-v. input. Self rectifying $7 / 6$
type. Output approx. 200 v .600 ma...

3-VALVE R.F. AMPLIFIERS V.H.F.

2-VALVE BATTERY AMPLIFIERS

Q.P.P. output. Complete with 2 -volt valves. In strong wood transit case $10 \frac{1}{3} \times 8 \times 7 \mathrm{in}$. New $21 / 6$ bargain offer. Carr. and pkg. 2/6 extra. $21 / 6$

9-PIN VALVEHOLDERS. Mullard type for $5 / 6$ EF50, etc. With ceramic base. Per doz Quantities supplied to Trade.

Please Note: All carriage charges relate to the British Isles only - We do not issue lists or catalogues

LONDON CENTRAL RADIO STORES, 23, LISLE ST. (GERrard 2969) LONDON, W.C. 2

 Closed Thursday 1 p.m. Open all day Saturday and weekdays 9 a.m.-6 p.m.

A hundred years ago communication between prospecting parties and civilization was slow, uncertain and often hazardous. Today a radio telephony link eliminates the difficulties imposed by distance, terrain and climate. Geological, seismic and other prospecting parties all over the world are specifying the 50 watts Redifon GR. 49 as essential equipment. This efficient new short-wave radio telephone is very simple to operate, sturdily built and finished to withstand tropical conditions.

Redifon GR. 49 Radio Telephone

Hentral Radio

Radio Communications Division
REDIFFUSION LTD., BROOMHILL ROAD, WANDSWORTH, S.W.I8
Designers and Manufacturers of Radio Communication and Industrial Electronic Equipment

Fine tone RADIOGRAM from present GRAMOPHONE

IN THE HOME with the

S.H.E.F.I. MOVING COIL Voigt Patent No. 538058. PICK-UP

High fidelity without shielded transformer. No hum problem. Extreme lightness gives long record life. Complete with Transformer and full instructions. £2 plus Purchase Tax. De Luxe model now available with ball bearing suspension and spring counterbalance, £2.11.0 plus P.T.

EXPORT ENQUIRIES INVITED.
BROOKS \& BOHM LTD.
90. Victoria St, London, S.W.I. Telephone : VICtoria 9550/1441

You

because they are :INDIVIDUALLY DESIGNED RIGOROUSLY TESTED MECHANICALLY SOUND ELECTRICALLY PERFECT

12113A

5I, NORTHGATE STREET, DEVIZES. Phone 536

WEbB'S HEAVY DUTY OPERA. TING KEY.

The experienced operator will appreciate the perfect balance of this well made " G.P.O. pattern" key. Heavy lacquered brass movement with back and front contacts.

$$
\text { PRICE } £ 1.8 .6
$$

PRICE
£3.17.6

EDDYSTONE SEMI-A UTOMATIC MORSE KEY.
At long last we have a British made "bug " key, capable of high speed and easy adjustment. It is totally enclosed in a streamlined diecast housing, with rubber feet on heavy base. No. 689.

EDDYSTONE '640’ COMMUNICATIONS RECEIVER

An efficient general purpose short-wave receiver, designed to meet the exacting requirements of Amateur-Band Communications.

Coverage 31 to $1.7 \mathrm{Mc} / \mathrm{s}$.

Electrical Band-spread throughout range.
Eight Valves (plus rectifier).
One R.F. and Two I.F. Stages.
Efficient Noise-limiter.
10, 20, 40, 80 and 160 metre Amateur Bands calibrated.
Beat Frequency Oscillator.
Fly-wheel Control on Band-spread.
Vacuum mounted Crystal filter. Adaptor for Battery Operation.
The " 640 " has outstanding signal/noise ratio and extremely good image rejection.

> PRICE $£ 39.10 .0$ (NO PURCHASE TAX).
> AVAILABLE FROM STOCK $A T$ WEBB'S.

EDDYSTONE "S" METER No. 699 is also now available, complete with cable for plugging into Receiver.

PRICE 85 5. 0

EX-SERVICE

> We are not "Surplus Dealers" and we are not normally very enthusiastic about surplus service equipment. The Crystal Calibrated Wavemeter detailed below and the Panel Mounting Meters constitute something of special interest.
> WEBB'S TYPE " D2 '" CALIBRATED WAVEMETER.
> This is essentially a Crystal Calibrator giving markers at every Ioo kc / s and also discriminating markers at $\mathrm{I}, 000 \mathrm{Kc} / \mathrm{s}$, combined with continuous calibration on dial-scale reading single kilocycles between each $100 \mathrm{Kc} / \mathrm{s}$. It is applicable for both Recesiver calibration or Transmitting monitoring and for the latter purpose a telephone jack is incorporated. It is exceptionally well made with such details as temperature compensating Condensers, and separate $100 \mathrm{Kc} / \mathrm{s}$ and I, $000 \mathrm{Kc} / \mathrm{s}$ Crystals, which feature gives a greater accuracy and reliability than the dual type Crystal. Incidentally the Crystals alone would cost more than out price. Contained in neat metal case with hinged top lid, overall size $7 \frac{3}{3} \mathrm{in} . \times 7 \frac{1}{3} \mathrm{in}$. $\times 6 \frac{3}{4}$ in. high, and with stout outer wooden case for roingh transport use. Each instrument has been tested and adapted by Webb's for either operation of 6.2 volts A.C. or 6 volts battery. The Wavemeter comes to you ready tor immediate operation from 6.2 volts A.C. with easy internal provision for changeover to 6 volts D.C. The original Army Service Manual of 26 pages, with full circuit diagram is included, also a copy of W'ebb's "Simplified Instructions.'

> PRICE $\$ 6.17 .6$
> WEBB'S " D2T " TRANSFORMER for external connection from $210,230,250$ volts A.C. PRICE $14{ }^{-}$

MATERIAL

METERS New and Individually Cartoned in makers boxes. ExGovernmen: stock at a fraction of to-day's prices.
FLUSH-MOUNTING External Flange 2fin. SQUARE Fixing Hole Round $2 \frac{1}{6}$ in. diameter :-
o/5 milliamps ... 5/9 each $0 / .5 \mathrm{amp}$. R.F. with self-contained thermo-couple $\ldots \quad$ 5/9 each The internal thermo-couple can be disconnected, when the fundamental movement is a sensitive milliameter, full-scale deflection between 1.5 and $3 \mathrm{~m} / \mathrm{A}$.
Four of the above meters (2 of $\mathrm{o} / \mathrm{s} \mathrm{m} / \mathrm{A}$ and 2 of ol .5 amp . R.F.) at special rates. Four for $21 /=$. (Post free 22/-)
o/ I 50 milliamps
6/6 each 0/I milliamp.. 10/- each
FLUSH-MOUNTING $2 \frac{1}{2} i n$. ROUND Type Meters. External Flange $\mathbf{3}$ lin. dia. Fixing Hole 2 in in diameter:-
One-milliamp Meters, scaled c/100-ideal as foundation instruments. Internal resistance 75 ohms marked on each meter ... 16/-each ol amp. R.F. with self-contained thermo-couple... \quad 7/6 each o/20 volts A.C. (moving iron) 8/6 each o/15 volts A.C. (moving iron) 8/6 each
Post Customers-Please add 1/- extra on orders for meters (except special 22/- offer of four specified meters).

Come to the B.I.F. and see something that has never been done before- 5 kV D.C from a $350-0-350$ volt A.C. input. Simply connect three wires to the standard mains transformer in a television receiver. No E.H.T. transformer
 required. Also, a complete new range of high voltage metal rectifiers giving up to 15,700 volts from a pulse input.

Westalite
 METAL RECTIFIERS

"Westeht" unit, which gives 5 kV output from a 350 volt input.

WESTINGHOUSE BRAKE \& SIGNAL CO. LTD.
B STAND I H. 21 F OLYMPIA

82, YORK WAY, KING'S CROSS, LONDON, N.I

W.. is it Rotary or Pushbutton or Slider ? Is it Wanted for circuit selection, band selection, tap switching? is it for a new design or in quantities for a well proved circuit?

Whatever it is - the answer is always OAK!
The basic design of all Oak switches is one of strength and efficient functioning, including such exclusive features as the double-contact clip and the floating rotor, ensuring self-alignment of each section.

AND

SWITCHES

BRITISH N.S.F. CO. LTD., Keighley, Yorkshire (Sole Licensees of OAK Manufacturing Co., Chicago) A.B. METAL PRODUCTS LTD., Feltham, Middx. (Sub-Licensees of N.S.F.)
The only Manufacturers of OAK Switches under Patent Nos. 478391 a 478392

* DYNamIC RadIo Frequency response curves
* DYNAMIC AUDIO FREQUENCY RESPONSE CURVES

Ł DYNaMIC MECHANICAL RESONANCE CURVES
\star DYNAMIC THERMIONIC VALVE CHARACTERISTIC CURVES
can be AUTOMATICALLY TRACED on the screen of the Model 1200 OSCILLOSCOPE with the aid of the appropriate unit.

Model 1200 Oscilloscope. Price $\mathbf{E} 2$ Model 1400 Unit. Price $£ 8100$

Enquiries to
INDUSTRIAL ELECTRONICS
229. Hale Lane, Edgware, Middx.

Tel.: EDG. 7312
Makers of Industrial Controls and Precision Instruments.

Designed to suit the cirveuit

The accuracy and stability of the padding capacitor in a superheterodyne receiver is a major factor in ensuring efficient operation of the set. The high stability and close tolerance of capacitance of U.I.C Silvered Mica Capacitors guarantee efficient operation of the receiver under the most arduous conditions of service. U.I.C Silvered Mica Capacitors used as padding capacitors ensure long, trouble-free life in new designs and reliable performance after servicing.

Build and Service the set with...

? HIGH STABILITY J. Capacitors

UNITED INSULATOR CO. LTD, OAKGROFT RD. TOLWORTH SURBITON SURREY

d

growing Audience

MORE AND MORE people are enjoying good radio entertainment through the smooth power provided by Pertrix accumulators. Every Pertrix product gives a consistently high performance-just a little more than the promise. For troublefree listening choose the accumulator in the red and yellow pack. Most good dealers stock them.

HOLSUN BATTERIES LTD. 137 Victoria Street, London, S.W.

The best British Radiograms are Ambassador! Overseas buyers will be particularly impressed at our new range and attractive prices.

(andy

mans transformers A. F. TRANSFORMERS SMOOTHING CHOKES

THERMAL DELAY SWITCHES THERELAY SWITTANCES
POWER RESISTANt chadeby

OHTTEB SEM \&QNTROm LTD

- Co-menial Construction

The voice coil and centring member assembly of the "Series 700 " Reproducers is a further example of the advanced design of these models. The voice coil is wound with wire especially enamelled to give perfect adhesion between the wire and former and between layers and is of the optimum number of turns and weight for maximum efficiency; all models have an impedance of 3.0Ω at $400 \sim$. The centring member is made of two layers of Bakelised linen, moulded under heat and pressure with beryllium-copper strips inserted between them; two of these strips form the connections to the voice coil and a third is a balancing member to ensure truly axial movement.
The removal of voice coil leads from the diaphram itself, hitherto inseparable from the desiga of the loudspeakers employing corrugated centring members, prevents the inevitable distortion of the cone in assembly by the insertion of eyelets or soldering tags and the asymmetrical loading due to the inertia of the leads and attachments. The two layers of material with fibres disposed at 45° provide a centring member of exceptional radial rigidity, at the same time giving the maximum flexibility in the direction of motion. Lastly, as are all other component parts, this assembly is non-hygroscopic and fully tropicalised.

Reproducers \& Amplifiers Lid., Wolverhampton

Wour designs

LET US BRING THEM TO
LIFE/

Made in Three Principal Materials
frequelex An insulating material of Low Dl-electric Loss, for Coll Formers, Aerial Insulators, Valve Holders, ete.

PERMALEX

A High Permitrivity Material. For the construction of Condensers of the smallest possible dimensions.

TEMPLEX

ACondenser material of medum permittivity. For the construction of Condensers having a constant capacity at all temperatures.

the most difficult problems solved by . . .

Bullers

BULLERS LOW LOSS CERAMICS

BULLERS LTD., 6, LAURENCE POUNTNEY HILL, LONDON, E.C.4 Telephone: Manslon House 9971 (3 lines) Telegrams: "Bullers, Cannon, London"

Drayton "R.Q." Motors are supplied reversing or continuous running, with or without selfswitching for $100 / 110$ or $200 / 250$ volts A.C. Final Shaft Speeds: 600 r.p.m. $/ 27 \mathrm{~min}$. per rev. Torque: 60 in . lbs. Consumption: 25 W . Send for List 302-1/

The DRAYTON 'R.Q.'

Drayton Regulator and Instrument Co. Lid.. West Drayton (West Drayton 261!)

Middx
 Specialists will enable users of battery sets to operate from a 6 -volt car accumulator, thus eliminating expensive H.T. battery replacements. Careful design has eliminated all interference. Consumption is less than $\frac{3}{4} \mathrm{amp}$.

MASTERADIO LTD., Sales Dept., 319/321, Euston Road, London, N.W.I

It's easy to make Pick-ups if you know how.

is the result of long experience and precision watch - making standards which give a finely constructed instrument the details of which are shown in the sectional diagram.

DE LUXE MODEL Robust design. Asccidental dropping on record will not damage Pick-up Extramely low moment of inertia (80 milligrarrs total weight of movement) Pure sine wave with no harmonic distortion Automatic needle or sapphire changing opens new fidelity field to the amateur Can be used with normal record changer without fear of damage. Price (without sapphire) $\mathbf{6 5 . 1 0 . 0}$, plus $24 / 6$ P.T.
PLUG-IN HEADS Available in both junior and De Luxe types to fit Collaro and Garrard arms, thus providing easy
change-over from
Magnetic types. Input conversion may be required. (See our Technical Brochure.) Price 49/6, plus 11/-P.T. Separate Ejector for De Luxe type. 30/10, plus 6/10 P.T.
Sapphire Needle with specially tapered shank, 15/3 (incl. P.T.).
PRE-AMPLIFIERS having an inverse of che recording characteristic incorporated are available for use with pick-ups. These are necessary with some amplifiers. Price complete with valve and input Transformer, f6.I.0.
Announcing The NEW LEXINGTON

AMPLIFIER

Designed in our laboratories for use with our own Pick-ups, also as an Audio-channel for high quality local station radio feeder units.
The amplifier is available completely constructed or the necessary circuit diagrams and technical details can be supplied to technical amateurs who prefer to do their own construction.
In addition technical details and circuit are also available showing the construction of a high quality RADIO FEEDER UNIT incorporating local stations and television sound bands for use with the above amplifier, making a perfect combination for the connoisseur.

Prices and details of the above will be sent upon request.
This service is introduced at the request of the many satisfied users of our Pick-ups.

Illustrated Technical Brachure upon request.
Export and Trade Enquiries invited

Plans for a neighbourly world

Marconi's first wireless messages did more than enable nation to speak to nation. They drew closer the world's boundaries, quickened the tempo of existence and turned distant acquaintances into next-door neighbours. Broadcasting has helped still further to increase our knowledge of our neighbours; wireless navigational aids and radar have brought greater safety and faster travel between Continents. And so Marconi's will continue to pioncer. Their engineers are busy today on developments which will make the world a closer community tomorrow.

Marconi

the greatest name in wireless
MARCONL'S WIRELESS TELEGRAPH COMPANY LTD. MARCONI HOUSE, CHELMSFORD ESSEX.

TRANSFORMERS \& CHOKES

Representing a range of

The name Gardners is synonymous with the highest standard of material and workmanship.

CAHINHIH SOMERFORD TRANSFORMERS

Write for List and Specifications to

GARDNERS RADIO LIMITED

Somerford, Christchurch, Hants.

The Roberis' Poriable Valve \& Circuil Analyser:

Gives
simultaneous measurement of current and woltage at any electrode of any valve without removing chassis from cabinet or disconnecting in any way. Also measures resistance between any electrode and ground.
Eleven current ranges -500 microamp to 2.5 amp$A C$ and $D C$.
Seventeen voltage ranges $\mathbf{- 2 . 5}$ volts to 1,000 volts AC and DC. (2,000 ohms per volt).
3 resistance ranges -0 to $5,000,50,000$ or $\$ 00,000$ ohms. Can also be used as an ordinary universal meter.
Best materials and workmanship. Guaranteed 12 months. Dimensions: $12^{\circ} \times 12^{\prime \prime} \times 51^{\prime \prime}$: weight O 隹.
Monufoctured by

LONDON SOUND LABORAIORIES LID makers of ouality electronic test eovipment 40 SOUTH MOLTON LANE • BOND STREET • LONDOK, W:I

RIBBON TYPE JB/P/R/I
Fixed Point Pressure of toz. Output voltage, 10 to 15 mV . Permanent Point 6 times harder than Sapphire. Price in U.K, wlth special mumetal screened transformer, and Purchase Tax, E $10 / 2 / 4$. former, and Purchase Tax, $68 / 15 / 9$.
The new BRIERLEY RIBBON PICKUP, type JB/P/R/I-as used by a leading gramophone company for direct playback from the wax-now supersedes the type JB/P/R. The stretched unbreakable ribbon has a high frequency lateral resonance not lower than $40,000 \mathrm{c} / \mathrm{s}$ and the top longitudinal resonance is similarly very high and well controlled. The removal of these resonances to the supersonic range results in a response $\pm 1 \mathrm{db}$. up to $35,000 \mathrm{c} / \mathrm{s}$, extremely low waveform distortion at high frequencies and a signal to scratch ratio with an unrestricted response, 4 dbs, better than previously obtained with the response of the JB/P/R limited to $7,500 \mathrm{c} / \mathrm{s}$. At the low frequency end, additional provision has been made to cope with asymmetrical groove shapes at fow frequencies arising mainly from processing difficulties in commercial discs. The general effect is a smooth response and very low scratch level with the advantages of wide frequency response. Write for full details.
Demonstration at Webbs Radio, Soho Sc., London, W.I: and Holiday and Hemmerdinger Led., Hardman St., Manchester.
J. H. BRIERLEY (GRAMOPHONES \& RECORDINGS) LTD.
 only a Marconi product can give. Full specification on request.

MARCONI ${ }^{(2) I}$ INSTRUMENTS LTD
 ST. ALBA NS, HERTS.

Northern Office : 30 ALBION STREET, HULL. Phone: Hull $\| 6144$. " Western Office: 10 PORTVIEW ROAD, AVONMOUTH. Phone: Avonmouth 438 ,

Fifteen years ago we introduced the first British-made low-loss ceramic. To-day the range of Frequentite components covers more than a thousand pieces of every shape and size.
With such a store of manufacturing experience we are able to offer advice backed by practical knowledge on your insulation problem. Please consult us before you finalize your design.

STEATITE \& PORCELAIN PRODUCTS LTD.

Rectifier's it's plain to see- can be BRIMARIIED with an SB S

T
HE Brimar metal rectifier type S_{3} is a big brother to the popular SB2 and is rated at 250 volts, $65 m A$. It is fitted with an insulated bracket and may be mounted horizontally on chassis or cabinet as required.

The SB3 will replace the ${ }_{117} \mathrm{SB}_{3} G T$ in the usual American $A C / D C / B a t t e r y$ receiver and will substitute for the rectifier sections of types $1_{7} N_{7} \mathrm{GT}, 1_{\gamma} P_{7} \mathrm{GT}$ and $117 \mathrm{~L} / \mathrm{M} 7 \mathrm{GT}$. In such receivers, the filament supply for the battery valves is taken from the rectified H.T. via a suitable dropping resistor.

After Brimarizing, the H.T. should be between 80 and 100 volts and this must give 1.4 volts across each filament section. To obtain these readings the line cord may need adjustment, an average value being 800 olims for a mains input of 230 volts.

If modulation hum is present, it may often be eliminated by fitting an 8 mF . condenser between the screen grid (Pin 4) of $1 A_{7} G$ and chassis.

TYPE	CHANGE SOCKET		OTHER WORK NECESSARY	PERFORMANCE CHANGE
	FROM	то		
$11726 G T$	International Octal		1. Fit rectifier Type SB3. 2. Connect + ve (Red) tag to Pins 4 and 8 of Valve Socket. 3. Connect - ve (Black) tag to Pins 3 and 5 of Valve Socket.	Receiver will function almost immediately on switching "on." no warm-up time being necessary.

IMPORTANT. The SB3 is a direct replacement for the rectifier type RDIB/9/I used in the new "Double Decca "and Collaro "Microgram."

Vjitucullu Distortion

Send for full detolls of Amplifer type AD/47
This is a 10 -valve amplifier for recording and piay-back purposes for which we claim an overall distortion of only 0.01 per cent., as measured on a distortion factor meter at middle frequencies for a 10 -watt output. The internal noise and amplitude distortion are thus negligible and the response is flat plus or minus nothing from 50 to $20,000 \mathrm{c} / \mathrm{s}$ and a maximum of .5 db down at $20 \mathrm{c} / \mathrm{s}$.
A triple-screened input transformer for $7 \frac{1}{2}$ to 15 ohms is provided and the amplifier is push-pull throughout, terminating in cathode-follower triodes with additional feedback. The input needed for 15 watts output is only 0.7 millivolt on microphone and 7 millivolts on gramophone. The output transformer can be switched from 15 ohms to 2,000 ohms, for recording purposes, the measured damping factor being 40 times in each case.
Built-in switched record compensation networks are provided for each listening level on the front panel. together with overload indicator switch, scratch compensation control and fuse. All inputs and outputs are at the rear of the chassis.

C.P. 20A. 15 watt AMPLIFIER

for 12 volt battery and A.C. Mains operation. This improved version has switch change-over from A.C. to D.C. and " stand by "positions and only consumes $5 \frac{1}{2}$ amperes from 12 volt battery. Fitted mu-metal shielded microphone transformer for 15 ohm microphone, and provision for crystal or moving iron pick-up with tone control for bass and top and outputs for 7.5 and 15 ohms. Complete in steel case with valves.

As illustrated. Price 62800

RECORD REPRODUCER

This is a development of the A.C. 20 amplifier with special attention to low noise level, good response ($30-18,000 \mathrm{cps}$.) and low harmonic distortion (I per cent. at 10 watts). Suitable for any type of pick-up with switch for record compensation, double negative feedback circuit to minimise distortion generated by speaker. Has fitted plug to supply 6.3 v . 3 amp . L.T. and $300 \mathrm{v} .30 \mathrm{~m} / \mathrm{a}$ H.T. to a mixer or feeder unit.
 Complete in metal cabinet and extra microphone stage. As illustrated. Price 25! Gns. CHASSIS, without extra microphone stage. Price $\mathbb{E} 1$.

257-261 THE BROADWAY, WIMBLEDON, LONDON, S.W. 19
TELEPHONES: LIBerty 2814 and 6242-3.
TELEGRAMS: " VORTEXION, WIMBLE, LONDON."

PREMIER RADIO COMPANY

MORRIS \＆CO．（RADIO）．LTD．

ALL POST ORDERS to 167 LOWER CLAPTON RD．，LONDON，E．5．＇Phone ：Amherst 4723 ALL CALLERS to 168 FLEET STREET，LONDON，E．C．4．
 ＇Phone ：Central 2833.

Terms of Business：Cash with order or C．O．D．over £1．
Send $2 \frac{1}{2} d$ ．stamp for latest list．

GOVERNMENT SURPLUS

RELAY UNIT TYPE 9 consista of a $24 v$ ，operated relay unit incorporating 3 KTBAG valves，a teiephone line （Uniselector）awitch with 6 poles， 26 contacta， 5 P．O． type relays， 2 high－speed relays，and a quantity of other material．Contained in un attractive relay rack iype metal case $19 \times 19 \times$ V1hn．deep．Price 60／－，or witbout valves， $30 / \%$ ．Carringe and packing $0 /$
TEST UNIT AP53874 conkists of a Teat Unit for a U．H．E． Tx．，incorporates a 230 v． $60 \mathrm{c} / \mathrm{s}$ Power Jack，witb a smonthed output of 240 vp up $90 \mathrm{~m} / \mathrm{a}$ and 6.3 v ． 2 a ． 2 EFSu， 1 ECS2， 1 EASO， 1 万Z4G， 1 Y 63 Masle Eye，Hud a large quantity of condenkers，resistors，and tuning gear Contained in an attractive atcel case．Slze $101 \times 9 \times$ $8_{i n} h$ ．Price $45 /-$－Carriage aud pucking 5
METAL RECTLFIERS．

Output 300 v． 60 ma．， $5 /-275$ v． $30 \mathrm{ma}$. ，4／6－ 250∇ ． | 30 | | |
| :--- | :--- | :--- |
| 1 a .12 | $1 /-48$ | 4 |

－攺， $37 / 6$
Mains Transformers at exceptional prices，All are heavy duty and robust．All 230 v． 50 cycles input．
Tyle

$$
\begin{aligned}
& 760 \text { v.. } 4 \text { v. 3a. } \\
& 6.8 \mathrm{v} .1 \cdot 2 \mathrm{z} \\
& 3140 \text { v. } 3 \mathrm{a} \text {. and } 104 \mathrm{v} .1 .5 \mathrm{a} \text {. (autowound) } \\
& 32 \quad \begin{array}{l}
700-0-700 \text { v. } \\
1 \text { 1a., } 4 \text { Y. } 4 \mathrm{it}
\end{array} \\
& 33 \quad 38 \text { v. at } 2 a, \text { tapped at } 36 \text { v., } 34 \text { v., } 32 v .
\end{aligned}
$$

> 41 2R.4 2 v. 2 a
> $41550 \cdot 0.550$ マ. 120 m\&., 4 จ. 2 a., 6.3 v. 2.5 a., $\begin{aligned} & 6.3 \mathrm{~V},-3 \mathrm{a} \\ & 500-0.500\end{aligned}$
> 43 4v. 20 a v. 170 1.a., 4 v. 4 a.
> 43 4 v. 20 a .

TEST UNIT TYPE 33 conaists of a apecial purpose Oscilloscope that requires only rewiring und the addition of a few condensers and resistore to convert into a
standard Oseilloscope，input 230 ． 50 e． 43 in．C．t．
tube and 18 S220A， 1 LB34， $5 Z 4,3$ SP41 2 EA50 tube and i SU220A， 1 EB34， $15 Z 4,3$ SP41， 2 EA50， ＂re included．Controla are＂Briglitness，＇＂＂Velocity，＂， ＂X Shift，＂，＂Y Shift，＂Focus Amplifier，＂Ib／out，＂， ＂Calibrate，＂＂on／ofy／Tx．＂Price e8／8／－．Carriage and packing 20／－．
METERS．All meters are by the beat makers and are contained in bakelite cases．Prices are about oue－quarter the original cost．
Range Exinn． Kange Dinn．
500 rua． 3 in ． 500 I
40 v.
2 f ．
2
4
20
25
25
25
25
300

is

100 20 15

$$
\begin{aligned}
& 15 \\
&- 15 \\
&- 20
\end{aligned}
$$

－\quad| 15 |
| ---: |
| 30 |
| 3 |

（－\quad| 5,0 |
| :--- |
| 1 |

$40 /-$

$35-$
$25-$

$\begin{array}{ll}0 \text { च．} & 2 \mathrm{in} . \\ 1 \mathrm{in} & 2 \mathrm{in} . \\ 0 \mathrm{a} . & 2 \mathrm{in} . \\ 0 \mathrm{a} . & 2 \mathrm{in} . \\ \mathrm{a} . & 3 \mathrm{in} . \\ \mathrm{m} . & 3 \mathrm{in} .\end{array}$ 2

5ify．div ALUM
 ALUMINIU

aluminium CHASSIS．Sub
$7 \times 3 \frac{1}{5} \times$ ，with four sides．

$14 \times y \times 2 \mathrm{jin} . \cdots 88 / 3 \quad 16 \times 8 \times 2$ in．$\cdots \quad 8 / 6$ SUPERHET TUNING PACXS Cor $13 / 6$ SUPEREET TUNING PACES Completely wired and aligned．13．40，40－120，190－670 metres．R．F．stage． condenser，callbrated $\mathrm{c}_{\text {，}}$ only．Complete with 3 －gang condenser，calbrated，engrsved Perspex dial，and $\$ / \mathbf{M}$
 8 WATT A C 8WATT A．C．AMPLIFIER．For $200 / 250$ v． 50 c ．mains． 2 to 16 ohms output．Mike，Grarn，and Radioawltched Inputs， $28 P$ ． 41 ，one HLA11， 2 Pen45，one UU5．Screened Input Mihe Transformer．Tone Control．In attractive tounspeazers by Gamors Mperker．£15／15／－ COUDSPEAZERS BY FAMOUS MAKER．
5in．P．M． $2-3 \mathrm{ohms}$ ．
$\begin{array}{lll}5 \mathrm{in} . & \text { P．M．} & 2-3 \text { ohms } \\ 6 \text { in．} & 2-8 \quad 2 \\ 8 i n & 2-3\end{array}$
$\begin{array}{lll}\text { 6in．} & " & 2-8 \\ 810 i n & " & 2-3 \\ 102 \mathrm{in} & " & 2-3\end{array}$ 101 n ．
l 2 in.
10in．Finergiged．2，000 ohm field
$85 /=$
$25 /=$ MOTORS．Britishmade ELECTRIC GRAMOPHONE Fired speed（78 R．P．M．）for $200-250$ yolts ${ }^{2}$ £4／19／6．
OSCILLOGRAPH FOUNDATION EITS．
Comprise a transiormer giving an output of 800 下．，condensers， L．T．Transtormer． $55 /-$ ．

GOVERNMENT SURPLUS

R107．ONE OF THE ARMY＇S FINEST COMMUNICA－ TIONS RECEIVERS．（See＂W ．W．＂．Aug．＇ 1945 ．）${ }^{9}$
 kc．）2nd Detector，A．V．C．Ai．amp．A．C．mains， $100-250 \mathrm{~F}$ ，
or $12 \mathrm{\nabla}$ accum ．Frequency range 17.5 to $7 \mathrm{~m} / \mathrm{cs} ., 7.25$
 Complete．Write for full detaks．£16／16／－complete．

ALL－WAVE SUPEREET KIT．A Kit of Parts to build a 6 －valve（plus rectifier）receiver，covering 16.50 metres． Medium and Long ware－tands．Valve line－up 6K5， $6 \mathrm{K7}$ ． 6Q7，6J\％，two $25 A($ in pushpull．Metal Rectiflers are
incorporated for H．T．aupply．Output impedance is for incorporated for H．T．aupply．Output impedance is for
3 and 15 ohms．The latent Wearite Coll Pack incorporat 3 and 15 Ohms．The latent thearite Coll Packincorporat－
ing Iron Inust Celle le used，mahmg construction and ing Lron pust Celia is used，making construction and
alignment extremely simple．A pick－up position on the alignment extremely simple．A pick－up ponition on the
wavechange switch and pleh－up terminals is provided．A complete kft including valves but without speaker or cabinet．Chassis size 14×6 in．Overall height， 9 in． Price E11／16／3．Includes P．T．
Suitable loudspealers are the GOODMANS 10 in .6 －watt P．M．at $47 / 6$ ．or for superlative reproduction，the Goodmans 12 in ．P．M．at $£ 6 / 15 /=$ ．

NEW 1948 MIDGET T．R．F．RADIO KIT S u ithiliuminated Glass Dial．Ali parta iucluding Valves，M／C Apeaker and instructions．$\$$ valves plus Metal Rectifior． $200 \cdot 357$ metres and $700-2.000$ metres． 200 to 250 v．A．C．or A．C．／ D．C．mains．State which ts required．Slize，10in．\times Gin．\times
6 in．$£ 8 / 0 / 11$ ，inclading Purchase Ta亡． 6 in．$£ 8 / 0 / 11$ ，including Purchase Tax．
NEW 1948 MIDGET SUPEREET RADIO KIT with Hlluminated Gluss Dlal．All parts lacluding Valves，M／C speaker and instructions． 4 valves pius Metal Rectifier． $16-50$ metres and $200-257$ metres． 200 to 250 v．A．C．or A．C．／D．C．muins．State which Is required．Size， $10 \mathrm{in} . \times$ in．\times Gin，Eg，including Purchase Tax．
either kit，at $27 / 3$ ，including Purchase Ta

ACKNOWLEDGED THROUGHOUT THE WORLD

RESISTORS - CERAMICONS • Hi-K CERAMICONS • POTENTIOMETERS SUPPRESSORS • VITREOUS ENAMELLED WIRE-WOUND RESISTORS Erie Resistor Ltd., The Hyde, London, N.W.9, England Telephone: COLindale 8011-4. Cables: RESISTOR, LONDON. Factorles: London \& Gt. Yarmouth, England. Toronto, Canada• Erie, Pa., U.S.A.

They'll never miss

a minute of ćHILDREN'S HOUR' if you rely on

ISSUED BY
THE CHLORIDE ELECTRICAL STORAGE COMPANY LIMITED
EDX9A

Your best set's most

No set is complete without at least one Stentorian speaker to allow you to enjoy the luxury of radio away from the receiver-in the kitchen or bedroom, for instance. And the quality of the most magnificent set will be matched without fault, for each Stentorian provides a high level of output
with distortion-free repreduction-and is housed in a handsome wooden cabinet of perfect acoustical construction. Ask your local dealer about them. Prices from 39/もd, with $5^{\prime \prime}$ speaker, to 65. 15. 6d. with $9^{\prime \prime}$ speaker and matching transformer.

-the finest extra SPEAKER for any set Whiteley electrical radio co, ltd., mansfield, notes.
ALIGNED IN
ACTUAL
RECEIVER

> OSMOR " Q ""
> COIL PACK

$3 \frac{1}{2} \times 2 \frac{1}{8} \times 1 \frac{1}{4}$
33'.
including Full receiver circuit and diagram

ALL
WAVE-BANDS
One hole fixing-only 5 connections.

EFFICIENT • SENSITIVE • SELECTIVE

Individual OSMOR "Q " Coils, S'het or T.R.F.
3/- each with full circuit.

[^9]

Amnoumcing ...

Stabilized Power

 Supply Unit
Type S.P. 200100

* 200 volts DC constant from zero to 100 milliamperes.
* Effective ' Internal' resistance is 2 ohms.
\star Ratio of mains fluctuations to change in DCvolts better than 60/1.
* Less than 2 millivolts of ripple.
* Rectified LT voltage variable from 6.5 volts at 2 amps to $\mathbf{1 2 . 6}$ volts at 1.5 amps.
* LT volt meter and Rheostat.
* Available for rapid delivery-send for descriptive leaflets.

BIRMINGHAM SOUND REPRODUCERS LTD.

CLAREMONT WORKS, OLD HILL, STAFFS. PHONE: CRADLEY HEATH 62I2.3

xamining the effectiveness of

 ectrostaticzreens

To test the effectiveness of a transformer screen, measure the capacity :tween primary and H.T. secondary; then connect the Neutral terminal "the Bridge to the transformer screen or frame, and the capacity should rtually disappear. This test can be used to determine the existence of \rightarrow electrostatic screen which may have been connected internally to the ame of the transformer.

Wayne Kerr

MIe MCOVIC
 ELECTRONIC TESTMETER

22 Ranges.
Long-life batteries.
VHF probe and 5000 v . D.C. multiplier optional.

The multi-range

meter that will measure

A.F. ER.F. signal voltages!
 PRICE E 24 . 10 s.

ELECTRONIC INSTRUMENTS LTD

17 Paradise Road, Richmond, Surrey

WELWYN ELECTRICAL LABORATORIES LTD
Teleohone. Welwyn Garden 28168

TWO AMPLIFIERS covering all normal requirements for the highest quality record reproduction. THE CONCERTO 12 watts- 8 triodes plus rectifier. Separate treble and bass controls with two steps of bass boost. E27.10s.
THE KI 5 watts -7 valves. Compare this specification with any other 5 watt amplifier in this price region. Push-pull with negative feed-back, distortion less than I per cent. Separate treble and bass controls. 17 gns . Available as a kit 13 gns . Blueprint separately $2 / 6$. Both Amplifiers are designed to take any type of Pick-up, Movilng Coil, Moving Iron, or Crystal, without additional pre-Amplifiers or Tone corrections. Radio input sockets are provided and tapped output transformer provides 15,7 and 3 ohm impedances.

Send stomps for fully illustrated catalogue of Amplifiers, Pick-ups and Speakers.
CHARLES AMPLIFIERS LTD., 1e, Palace Gate Kensington, W.8.
(WEStern 3350)
 acoustically damped, totally enclosed, cabinet of optimum dimensions. The walnut veneered cabinet is hand polished and ftted with an anodised aluminium grille. PRICE 20 Gns.

ELIMINATE SOUND

 DISTORTIONCandistortion be eliminated? Not quite, of course, but it can be reduced to a minimum by the use of loudspeakers which will introduce as little discoloration as possiblewell designed loudspeakersVitavox loudspeakers in fact.

MANUFACTURERS OF SOUND EQUIPMENT

VITAVOX LIMITED

 Westmorland Road, London, N.W.9, England Grams : Vitavox, London, England
PRECISION COMPONENTS

CORD DRIVES
Now available in five types as illustrated (left to right) Standard, R/V, Reverse, "D" type and "A" type. All one hole fixing.

GANG CONDENSERS

A wide range is now available in 1, 2, 3 or 4 gang types of various capacities.

Write for Catalogue No. (W.W.I.)

OUR packs have been designed for the more advanced type of Raclio Receiver, covering wave bands from 5 to 2,000 metres up to 6 Bands. High frequency stages are included together with the necessary padding and trimmer condensers, the whole being carefully aligned and receiver tested. Full details of these packs and other combinations are available on application

[^10] Richmond 2950

"Q-MAX"SLOW MOTION DIAL FOR SELF CALIBRATION

Dial $6 \frac{1}{2}{ }^{\prime \prime} \times 3 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$, engraved five blank scales and one 0-180. B-I drive ; metal escutcheon, glass and knob
$15 / 6$

Q-MAX" ABSORPTIO WAVEMETER AND PHONE MONITOR
All amateur bands covere Plug-in coils, $3 / 9$ each (1.8 mc $3.5 \mathrm{mc} / \mathrm{s}, 7 \mathrm{mc} / \mathrm{s}$, 14 mc $28 \mathrm{mc} / \mathrm{s}$).
Price with one coil -
35

IF YOU WANT

NEW HIGH QUALITY CIRCUITS

QUALITY PRODUCTS WE HAVE THEM.

NO
EX. GOVT. SURPLUS.

ERRYC 25 , HIGH HOLBORN, LONDON, W.C. 1
(Opp. CHANCERY LANE)
Tel. : HOL. 6231

We have produced a

CORNER HORN REPRODUCER

which will be of interest to those who like to listen to as near the real thing as possible

May we send you details?
-ALSO-
FEEDER LINITS, TONE CONTROL UNITS, TUNERS and the WILLIAMSON AMPLIFIER. Trade and Export Enquiries invited.
THE ELMSLEIGH RADIO COMPANY,
1102, London Road, Leigh-on-Sea, Essex. Telephone: Leigh-on-S:a 75163

TELE RADIO (1943) LTD.
 OFFER THE FOLLOWING EX-STOCK

AERIAL WIRE HARD DRAWN ENAMELLED COPPER.

12 S.W.G. 75 feet
14 S.W.G. 75 ft .
12 S.W.G. 100 tt
12 S.W.G. 100 tt.
COAXIAL CABLE fin. dia., 22 ft . lengths with plugs
DURAL PANELS
Lighter and easier to work than steel. Finished fine black crinkle. 10 S.W.G.

177, EDGWARE ROAD
Phone : AMB. 5393. 14 S.W.G.
$19 \mathrm{in} . \times 10 \mathrm{in} \quad 9 / 6$ each
$19 \mathrm{in} . \times 8$ in.
$19 \mathrm{in} . \times 7 \mathrm{in}$.
19in. $\times 3$ in.

- LONDON, W.2. PAD. 6116/5606.

Zate $6 /-10 r 2$ lines or less and 3 - ior overy additona or part thereor, average hines 6 words, 190 re, first post Wednesday, May 5 th. No responsibidity fited for eirors.

WARNING

Readers are warned that Government surplus components which may be offered for sole through our columr.s carry no manuiacturer's tuarantee. Many of these components wing ther special purposes making them unsuitabie for civilian use, -or may have deteriorated as a result of the conditions under which they hove been stored. We cannot undertake to deal with any complaints regarding any such comporteris purchased.

NEW RECEIVERS AND AMPLIFIERS

WAKE the Easy Way " with the Re

- Weltham. Middx. ing or chassis compiete tor gram mounting, ram units, grams, amplifers, 5-500 wats, why ot try us? We always try to help; s.a.e. for lis: Mason's (W.W.), Wivenhoe, nr. Colchester. 115 valve. 12 watts. 30 D.B. bass and treole send for specification.-Broadcast \& coustic Equipment Co.. Ltd.. Broadcast House T.R.O.Seniors. AR88s, brand new; send $21 / 20$ stamp for list of these and similar items; uperb stocks of al amateur requrements. 080. Grams: Jonrad," Macciestield, [9678 NHORT-WAVE Denco communications receiver \int shortly availabse, a real step forwaid in hort-wave technique, you simp.y niust have the ata sheet of this fine instrument; Denco Comonents always avaisable to Mason's (W.W.). vivenhoe, nr. Colchester. \rightarrow mains amplifier, 6 -vave Pen 45 s in push pull. input for mic., gram., and radio, switch ing for same, housed in black crackle case with chrom. handles, these are with 12 in speaker Govtio 12 gns , or complete with 12 l . 6. Carnarvon Rd., Leyton. $[9508$ BRIERLEY ribloon and armature pick-ups Arrangements are being made for the demonhave not so far been compieted. It is possible lor our sajes representative to demonstrate your own home when next in your district. pool. 2 . 1 MPLERS, radio-feeder units and 88266 A MPLIFIERS radio-feeder units and high quality electronic equipment for a!l purposes: May we zend you details of our range of quality amplifiers, incorporating ountrin pinampsiner and independent radio-feeder units for use with high grade amplifers? ; complete insta:lations undertaken.-Write or call Martin Slatel Gerr
R.A.F. I.F.F. responser units, comp.ete with elevision diodes, 2 twin triode mains valves and 1 EF50 Mullardi also includes $24 v$ motor generator", suitable for modification to universal motor. 2 magnetic relays, several mechanical densers, variable and fixed. and other useful densers, variabie and ixed. and ondid.-Uncle components: $35 /-$ each, carriage paid. Uncle chester 4. Marylebone High St. London, W.
Specialists in the design and manufacture of high grade fidelity gramophone reproducers and radio units. If you are interested in obtaining the finest possible reproduction from recorded music we invite you to hear our equipment demonstrated in conjunction with the Wilkins and Wright coil pick-up and the wharredare corner cabinet for the conversion of your existine a quotation for the conversion of your existing radio gramophong into a first-ciass coproducing of equipment to your own special requirements. Write for dessriptive leaflets of our range of fidelity amplffers and radio tuning units. 19900 RADIO TRADES MANTVFACTURING CO W. 5 (Ealing 6962) ploneers in the manufactire of the "Williamson "amplifler and now the basic circuit in G.E.C book, are producinf
a super edition of this fainous amplifier which is wuper edition of this fainous amolither the finest reproducer yet evolved. Using partridge transformers and other parts throughout of the finest quality, buit on heavy gauge chassis. there is able price. amplifier ofrered at such a reasonable and aligned. $£ 25 / 10$. 3 -valve pre-amp'ifier of new design piving perfect control of bass treble, flo. complete. Kit of parts kith Partridge transformers, 520 . loin speakers. up also supplied. Full details (stamp) from R.T.M.C Ltd as above.

Ifattrídge
 llhews

REMOVAL

Our offices at Petty France are now closed and we wish to bring to your notice our new address at Brixton as shown below. Pending the completion of our new
modern transformer factory. our offices, stores and works will now be located at this address.

LONDON SALES OFFICE

19^{48} tedeer units.-Complete range of tilgnea rately printed station named scales; model A3 s.m.l. wave frequency changer and i.f. stage; model B3, s.m.l. wave, r.f. stage, f.c., i.f., and double diode triode: model B5 de luxe 3 shortwave bands, m.1.. $15 \operatorname{in} \times 41 / 2$ in scale. Magic Eye--
Send $21 / \mathrm{d}$. stamp for illustrated brochure to sole Send 21/d. stamp for illustrated brochure to sole distributors. Coulphone Radio. 58. Derby ${ }_{[9313}{ }^{\text {St }}$
Ormskirk. Lancs. Ormskirk. Lancs.
CONNOISSEUR'S receiver. Combination 10
valve communication rece:ver and T.R.F Quality ve communication rece:ver and T.R.F. push-null quality amplifer Bass and push-pull quality amplifier. Bass and treble refinements. \&35. Makes ideal radiogram Write for full details or call for demonstration. We can modify your R1155 similarly or to your requirements. R1155 clrcuit and valves. cation and quality receivers.--R.T.S.. Ltd., 8 Gladstone Rd.. Wimbledon. S.W. 19 LibO LiC DE. VELOPMENT, Ltd., Hubert St., Birming-
ham. 6 (Tel. Aston Cross 2440). the Midland ham. 6 (Tel. Aston Cross 2440) the Midandis liamson and other qually amphiners strictiy to a.c./d.c. types; tone control stages, loudspeaker crossover units, contrast expanders and high quality t.r.f. radto feeders for all amplifiers: we can also adapt them for use with existing equipment accord:ng to customers' own requirements: fall for a demonstration; give us a R ADIO UNLIMITED. 16 . Carnarvon Rd 1 Leyt n. offer this month: Varied selecticn of ligram chassis, from to 3 wavebana, single or p.p. output. Examp:e: 3 -wave 6 -valve p/pull universal mains chassis. 6watts. tapped output, attractive giass dial, gram switching. complete with 10 in speaker. 16 gns ; 5 -wave chassis. Magic enging. ecomplete with universa? 41 watts output compe with gin spive £is 10 : special offer of 3 -wave universal mains superhet receiver, in handsume veneered cabinet. illuminated dial. 12 gns .; limited numbers available. $[9507$ GOODSELL, Ltd. 40, Gardner St. Brighton. tical to Williamson's but using P.X. 25 s in the output. giving 20 watts. Gardner manns transand the other at 350 volts, with 50 mils for your pre-amp and tuner, on two chassis. 27 gns ; the Williamson as per the W.W. using Partridge mains transiormers and chokes, Osram valves at c21, valve controlled stablised power pack. using 6L6. 6SJ7 and VR150/30, 26gns; pre-amp and E.F. 37 as pentode. glving two cuts and two boosts of treble and bass, and "straight." tions on'y complete with tuning eye, £9/9. 19669
RECEIVERS, AMPLIFIERS SECOND.HAND 3 -VALVE Burndept Attache portable: \&4.-Box TOR sale, AR 88 radio receiver.-Tel. Wan.
6754 . $\mathbf{B C}^{\text {C348 }}$ built-in a.c. power pack; £20.-Box CLYDESDALE for ex-Services electronic barTHE BC348 ex-U.S.A.A.F. communications receiver, 6 bands. $200-600 \mathrm{kc} / \mathrm{s} .1 .5-18.0 \mathrm{mc} / \mathrm{s}$. 8 £27/10 each, carriage paid; price of unm:dified BC348 on application.
THE R. 1155 ex-R.A.F. communications. R.X. 5 bands, $1.500-75 \mathrm{kc} / \mathrm{s}, 18.0-3.0 \mathrm{mc} / \mathrm{s}$, 10 valves.
power unit required; at $£ 12 / 12$ each. carriage CLYDESDALE SUPPLY Co.. Ltd.. 2, Bridge St. Glasgow. C.5. Tel. South $2706-9$. perfect 19828
C50.-AR88 comms. rec, 6 bands. prer
 $\mathbf{R}^{1155 \text { model conversion, comp:ete power pack. }}$ H aLLICRAFTER SX-28 (Super Skyrider), A spew, P.p. DA30, power'pack. Bi-Tone H ALICRAFTER S27, recently overhauled
H ALICRAFTER S27, recently overhauled, 28 NATIONAL H.R.O., incl, power unit. 9 coils. NATIONAL H.R.O.. 9 coils, bandspread faci1 OR sale, AR88LF communication receiver.-
Offers over $£ 45$ to R. $\& \mathrm{~S}$. Services NATIONAL H.R.O. comm. rec.. crystal gate, S I meter, complete with speaker; offers; would TEI EFUNT Tecorder.-Box 6803.
TELEFUNKEN ${ }^{7}$-valve pJrtable comm. RX.
 R stal gate, nolse limiter. 14 valves, $10-550$ metres. new cond manual, oflers--Box LA cations receiver. eliminator, charger; £5...
 b/s p.pack: £38.-104 Montagu Rd.. Waiton.
Peterboro'
 TRANSFORMERS LTD

PECKFORD PLACE, LONDON, S.W. 9

POTENTIOMETERS

Type T.W. Wire Wound	
Rating	RANGES
5 Watts Max. (linear)	$\left\{\begin{array}{l} 10-100,000 \Omega \text { Max } \\ 100-50,000 \Omega \text { Max } . \end{array}\right.$
3 Wates Max. (graded)	$\left\{\begin{array}{c} \text { (graded) } \\ 100-10.000 \Omega \text { Non- } \\ \text { inductive } \end{array}\right.$
Type S.G. Composition	
1 Watt Max.	2,000 ohms to 2 megohms

CHARACTERISTICS: (both types) linear, log., semi-log., inverse log., non-inductive,etc.

FULL DATA FROM

RELIANCE

Manufacturing Co. (Southwark) Led. Telephone : Larkswood 3245

HARTLEY-TURNER
 HIGHEST FIDELITY SERVICE

Having overcome the trials and tribulations inseparable from present-day production we can now offer the complete answer to all your highWe can supply limited numbers of amplifiers and our unique T.R.F. local-distant radio unit, and, of course, the Hartley-Turner 215 Speaker, In the opinion of thase who use our equipment other outfits costing up to hundreds of pounds. we are. where we always were-at the cop of the high-fidelity league table.
If you want this unequalled performance readymade, the vital prices are: Speaker $£ 9$; Pick-up
$£ 4 / 7 / 2$; 25-watt Amplifier $£ 40 / 10 /-;$ T.R.F. E4/7/2 ; 25-watt Amplifie
Radio Unit $£ 19 / 10 /-+P . T$.
But if you want to save money without sacrificing anything except a little leisure time in building it, we can supply you with all the information
with or without the components so that you can make it yourself, always excepting the speaker Thus a complete kit of parts down to the last screw, to make the amplifier costs $\mathbf{£ 2 4}$, and the results will be precisely the same as we guarantee with one we produced.
How this is done is given in the Hartley-Turner Technical Bulletins, price $10 /=$ each, with full text and photo-prints.
The following are ready
T.B. No, I 25-watt Amplifier and Power Unit. T.B. No. 2 T.R.F. Radio Unit.

Others are being prepared.
"New Notes in Radio," at $3 / 8$ post free, is the indispensable guide to the whole subject, and has already earned hundreds of testimonials for the accuracy of its information and the logic of its arguments. Send for your copy today.

H. A. HARTLEY CO. LTD.
 152, HAMMERSMITH RD., LONDON, W. 6 RIVerside 7387.

R 1155 receiver, excellent condition, £10; $3 v$ I R.O. Senior, little used mains power pack 11 and 9 coils, set unused spare valves; $£ 50$. Box 6879.
HOMELAND radiogram, $12 \mathrm{vs}, 6 \mathrm{~m}$ to 2,000 in £80. 5 bands. 15 watt U.D.O.. fig. walnut cabinet;
. Harvey, 29, Fairholme Rd. West £80. H. R. Harvey, 29, Fairholme Rd., West
Kensington. W. 14 Eensington. WND 14 200-watt amplifier for sale, manufastured E.M.I. in excellent condition. - Available for inspection by telephone call

PX4S a "W.W." $2 R F$ tuner with AVC piofesSionally built, no speaker; $£ 16 / 10 .-9$, Southfield R. 1155 communicalions receiver, perfect, inI cluding power pack and output stage, \&6/10. Speedwel! 2396 . transmitter, perfect,
19465 R.C.A. AR77E, $5401 c / \mathrm{s}$ to $32 \mathrm{mc} / \mathrm{s}, 10$ valves, casonable offer.-Harman, Pentlands, Pentland Rise, Portchester, Hants. NATIONAL H.R.O. recelver, latest model. at $\$ 390$, with Ericsson phones and spare valves, as new, any offers?-Box 5934 . 19431 Lect condition $30 \mathrm{~m} / \mathrm{c}$, practically new, in perfect condition; 545 , Seeker, 21 , Queens Gate R 1155 com. rec., good condition, d.f. parts reR moved, panel partially reconstiveted in black crackle, ready tor use 'phones; offers over HALLICRAFTER'S Sx, Strathaven.
1 etc. manual, \&36; RAFIIGA RX, perfect Wheatcroft, 34, Lethbridge Rd. Exeter. 19767 TOWARD 450A communication receiver, 1 with matched speaker, 65 mc to 540 kc . complete with Xtal gate, recently aligned, excelI ALLICRAFTERS SX28 with handbook and complete coils $50 \mathrm{sc} / \mathrm{s}$ to $30 \mathrm{mc} / \mathrm{s}$ with band spread .7 to $30 \mathrm{~m} / \mathrm{cs}$, both in perf. cond.-Box 6408
TROPHY 8 communication receiver, £13; £20; Genalex p.a. 4 ft horn speaker, $£ 5$. Surrey. Radio. ©ENIOR HRO complete with coils, power pack, condition in original shipping case; offers ove £60; BC-312N, brand new with speaker, manual
 used Partridge oscilloscope transformer, 45%; used Partridge oscilloscope transformer, $45 /-$
multi tapped vibrator transformer, 100 m a muiti tapped vibrator transformer, $100 \quad \mathrm{~m}$, a,
output, $12 v$ in, Box 6368 . 19585$]$ WHAT offers? -194735 mm G.B. 5 -valve am sound track. very high output, fine selective Brumley, Kent. Rav. 1687 . 1954 If RO Senior, grey enamel, fitted into enclosed speaker, 3 spare tubes, 2 spare coils, spare " S^{\prime} meter, 230 volt pack; £55.-G5FH, 17. Knottsall Lane, Langley, Birmingham. R C.A. com. rec. for sale (10 valves). in per bands with band spread; set cf spare valves available required. £50, also fully converted TT.R.O. Sen. 7 colls (3 bandspread) 19581 \mathbb{H}.R.O. sen., 7 colls (3 bandspread). a.c. and for a.c. operation, £22/10: Eddystone $400 \times$ coils and a.c. pack, $£ 12 / 10$; enquiries invited. Parfect. Swithland Lane, Rothley, Lefcs. [9849 T DDYSTONE communications receiver, type $1358 \mathrm{~K}, 40 \mathrm{kc} / \mathrm{s}$ to $31 \mathrm{mc} / \mathrm{s}$, a.v.c., b.f.o., noise limiter, etc., complete 10 coils. coil tray, power pack. matched speaker; buyer collects stock port.-Best offer: Gt. Moor 4002 or Box 6877. W.W. wartime quality amplifler (6,6 's) unit, smail w'ave, r.f. f.c.. i.f.. ddt stages, £5/15 (sultable valves. £1/10): basic kit for
4-valve a.c. T.R.F. receiver, £4/15.-Box 6369 . I.R.O., excellent condition, 9 coils covering speaker, phones, instruction, 55 or nearest, pack a lot of amateur equipment such as transmitting valves, high voltage rat. condensers. etc.-Box 6858 MERICAN amateur radio gear receivers A transmiters, code equipment. test gear aerial systems and masts, te!ephone apparatus transformer's, chokes, rectifiers, etc., etc.; ful list available, stamp will oblige. Harris 40-WATT quality amplifier, trimmers, output 15 meter, 3.5, 7.5, 15, 30 ohms output. two 41 t horn loudspeakers, fitted 8 in P.M. units, unused; $£ 80$ the lot, or would separate. Mc Nabb, 65 , Linden Ave. Wembley.毋1b welght of wireless for £15; type 19 sale, comprising set with 16 valves, etc., power unit, with vibrator and rotary transformer etc., and aerial variometer, made by R.C.A. Canadian Victo:" carriage extra, packing re-
turnable for credit, or would dispose of the lot turnable for credit, or would dispose of the lot
if collected.-Hampshire Ignition, Ltd.. Cheesehill St. Winchester. Tel. 2366. Ltd.. Cheese-

COMMUNICATIONS RECEIVERR.II
 This famous 10 valve receiver is known

 well for us to repeat all its outstandis features. Covers 7.5 mcs. -75 kcs. in 5 switc able bands. Slow and fast ratio tuning wi Magic Eye. Complete with 10 valves ar BOOKLET GIVING CIRCUIT DIAGRAM ETC. All sets have been used, but ARE I SUPERB ORDER, and only require pow pack. ONLY \&12/10/- (carriage, etc., $10 /$ INDICATOR UNITS. A large selection ex R.A.F. CR Units which are suitable fc conversion to oscilloscopes or televisio work, etc. The main items are listed belon but every unit contains a host of component UNIT TYPE 48 A contains 2 tubes VCR 13 (4in.) and 2 valves SP 41 . ONLY 50/UNIT TYPE I84A contains I tube VCR 51 (6in.), and I 3 in . tube, 5 valves EF5O, 3 typ EB34, 3 type SP41, and 5 diodes. ONL' $85 /-$ UNIT TYPE 182 contains I tube VCR5I7 3 valves EF50, 4 type SP6I, and I type U52 ONLY 85
UNIT TYPE 162 contains I tube VCR5I7 I tube VCRI 39 (3 in .), 3 valves SP4I (6 volt) I VRI7, I CV67, and 12 v. cooling blower ONLY 100/
Customers are requested to call if possible for these CR Units, owing to risk of damage in transit, but if unable to do so please add $10 /-$ or packing and carriage on No. 48, and 15/TEST SET
TEST SET TYPE 74 contains VCRI39, I valve SU2I50A, I type 6Q7, I type 6J5G, 3 type SP4I (6 v) , I type Ell 48 , I type 5Z4. Internal power pack for normal A.C. mains input. ONLY $67 / 10 /=$. Requires little modification for use as a normal oscilloscope.
C.W.O. pleas S.A.E. for lists.

Corl: THE RADIO CORNER

138, GRAY'S INN ROAD, LONDON, W.C. 1 ${ }^{3}$ Phone ; TERminus \% 937 .
Open antil 1 p.in Saturdays, we are 2 mins Irom High Holborsı, 5 mins, from King's Cross

AT ALL GOOD RADIO SHOPS

TECHNI-GEN

No. 8 Now Ready! HOW TO MAKE an AC/DC ALL-WAVE T.R.F. 3 Valve \& Rectifier RECEIVER

THIS aresta addition to the Famous Techni-Gen Series describes, with large.size Blue. prints, layout Diagrams and complete instructions a very efficient Receiver covering wavelenghs of $12 \cdot 30,30-75$ and $200-540$ metres. There is provision for a Gramophone Pick-Up and use of Headphones

LEWIS GEORGE LABORATORIES LTD.

227-229, Hammersmith Rd., London, W. 6 .

Sole Agents

Gordon Lawrie \& Co. Ltd., 36, Dorset Street, London, W.I.

R sale, rack-built amplifier, comprising two 100w units. With separate h.t. supply and

-ol: also 28 loudspeakers and 3 moving coil recent overhaul, perfect condition. can be | d at works by apptmt: £200 complete. |
| :--- |
| is. 3 . Clothier |
| St., E.1. Ave. 1848. |
| 9731 | PERB quality gramophone and radio equipment. variabe selectivity superhet c pick-

14 watt quality amplifier with optional back. phase inverter speaker, all by Sound 285 . C. 342 receivers, 115 volts uc and 12 volts dc Northrup test sets. type l-49 £5 new ex Brican Govt. valves-1R4, 1LH4, 1LN5, 3B7 1LC6, 6/- eat moving coil earphones, $6 / 6$ licratters Sky Challenger IT, 7.9-545 mettes, Pershore.
ITTLEWOODS.-Half-wave rectiliers, 250
40ma, selenium. 3/6; micro-telephones, se.
ruising as mike or phone for intercom with batteries. 1,6; miniature twin gangs, 15/-: nip for lists: all components 7 days approae, Finchley, N.3. Fin. 3060 . 9696 OIS offer you two exceptional bargains, ac, dc 2 -waveband developed radiogram superhe ractive cabinet, £9; ideal radiogram superhe $_{3}$ assis, 5-valve, 3-vaveband, large construction, th components of undoubted merit, guarand. $£ 15 / 15 \div$ Rois Radio, 12 , Suratford ${ }_{9}$
 \&10), tested circuit and instructions ior L10), ested circut obtainable ex-Government nverting easiy obeiver and indicator units, into highly satisfactory television receiver (sound ad vision). receiver i.f.s require no alteration. me of conversion appros. 12 hours; circuit and istructions, $5 /-{ }^{-B}$. W. Stevens, 122, ${ }_{[9559}$ \{ADIO CLEARANCES, Ltd.. 27, Tottenham Ct. Rd. London, W.1. Mus. 9188 . B.C. 348 ic/s. 2 R F stages, crystal tilter. B.F.O., 100/1 ming, and other refinements; at present uses oy dynamotor, but can easiry be mile they last \therefore. We offer these receivers, while they last, E16/10, brand new, withers 81481 10-vaive; acking 10/- extra. Recelvers Ri48. for spec re still have some or these sets transit cases ee previous issues, brand new, in tragram supdis We also have available P.P. Type 3 to , he R. W881, also hain rack mounting, at \&2/19/6 old only with the receivers 51 in $\times 5$ in $\times 11 i n$ number, 6 -valve receivers. salve sequence lisSK 7 , R.F. 12 K 8 mixer, $2-12 S K 7$. I.F.S 12SR7 det. kc / s. with I. F . freq. of $85 \mathrm{kc} / \mathrm{s}$; Type 2 covers $6-9 \mathrm{Mc} / \mathrm{s}$ with I.F. frec. $2.83 \mathrm{Mc} / \mathrm{s}$; provision at the rear for pug-in $28 v$ dynamotor, ideal for use as double superhet. conversion to car radios, 25 , etc., supplied complete with valves. less dynamotor, at $39 / 6$, plus $1 / 6$ post and packing.
R.F. units. Type 24 and 25 . valves (VR65)
 5 switched frequencies by means of a 30 approx. $30-40 \mathrm{Mc} / \mathrm{s}$. appros. $40-50$ Mets. moving coil 0-10ma, 2 in valves. 17/6. Meters moving coil 8-10 0 -150ma square. 8/-: 0 -30. 0 , 0 , 500 2 m square, 2 in circuar, $19 / 6$. All flush mounting

LOUDSPEAKERS, SEGOND.HANO

H^{V}OITLEY TURNER model 215, as nex: £7 $V^{\text {OIGT }}$ domestic reflector bass chambe mond 3759 . 215 Hortley Turner 9741 1 perfect: $£ 7$.-Kirby, 33 . Bramley Way, ${ }^{2}$ W W Haxed oak new; $\{39$.- Seymour, 19. Park hurst Court. N.7. 1955 B.A.E.C. hl/ft 121 in unit and deflector. VOIGT twin cone with horn. he, with bass Rd, West Ealing. W 13
VITAVOX K12/20, brand new, complete with baffle; $£ 8$ or nearest offer; 2 15watt pots.
less horns, $£ 1$ each.-IA.D., 97, Belgrave Rd. Iford EUSPEAKER by B.T.H. in polished 1 mahogany case 12 in . mains energised, 230 v . excellent condition, 8 gns .-Apply, Coles, Heatherban., Chislehur horn type, 40 in and 42 in PEAKERS, projector horn type, 40in and $421 n$
metal and fibre. complete with units. 10 s, by well-known makers. for sale; quantity approximately 170 .- Stechford. Birmingham, 9 COLID mahogany R-G cabinet. 44 in high pedestal spaker cabinet, 39in, fitted Masnavox pedestal spadel excellent order; offers over £35 or

Some excellent examples of ETLECTTTATE HARGAINS

PETROL ELECTRIC PLANTS
single cylinder 2-stroter cooled self oiling engine, mag. ign., coupled to $50 / 70 \mathrm{v} .10 \mathrm{amp}$ shunt wound dynamo 1,000 r.p.m. on C.I. bed plate $£ 45$ ex. Battersea Stores. We have a few I h.p. engines as above without dynamo but with bed plate, £20 ex. Battersea Stores.

DYNAMO BARGAINS.

12 volt 10 amp. C.A.V. 1,000 r.p.m., new condition
 $30 \mathrm{amp} .2,000$ r.p.m., $\mathbf{t 5} / 10 / 0.24$ volt 30 amp . 2,000 r.p.m., E7. D.C. Moter Blowers, 24 volt Keich Blackman, 5 in. inlet, 5 in. outlet, $£ 5$.

MOTOR PUMPS.

For

 will lift 3 ft . throw 10 ft . and handle $100 \mathrm{~g} . \mathrm{p} . \mathrm{h}$
65/10/0.

MOTORS A.C.D.C

230 volt sewing machine type, $1 / 25 \mathrm{~h} . \mathrm{p}$. , totally enclosed square construction with pulley bel and bracket, $84 / 10 / 0.1 / 30$ h.p.. 12 volt D.C. Motors, 75 /-. 1 h.p., 24 volt D.C. Motor, 2,000 r.p.m., E7.

FANS.

110 volt D.C table fans, $10 i n$, blade and guard $45 /-.220$ volts D.C., few only, 45/-.

TRANSFORMERS

B.T.H. 200/230/250 volt 50 cy . input, 2 volt 2 amp . and 75 volt 6 amp with 15 taps output, 70 /. carriage paid England and Wales.

METAL RECTIFIERS.

75 volts 6 amp., $£ 4 / 10 / 0$. 60 volts 1 amp., $30 /$. 36 volts 10 amp ., $55 / \mathrm{l}$. 12 volts 15 amp ., $\mathbf{E 2 / 5 / 0}$. 12 volts 1 amp. $12 / 6$

INDUCTOR ALTERNATORS

Output $400 / 500$ watts single or 3 phase 50 cy separate $6 / 8$ volt, $6 / 8 \mathrm{amp}$. excitation needed, speed 2,800 r.p.m. totally enclosed, ball bearings, as new, $£ 8 / 10 / 0$.
PREPAYMENT HOUSE METERS.
230 volts A.C. 10 amp . for $1 /$-coin by Chamberlain \& Hookham, 44 .
BATTERY CHARGERS, A.C.
230 volts, $50 \mathrm{cy}, 6$ volts, $\frac{1}{2}$ amp. 43/6. 6 volts 1 amp. $60-6$ volts $1 \frac{1}{2} \mathrm{amp} .68 / 9.6$ volts 2 amps. 92/6. 12 volts. 1 amp . 45 - all fitted Transformer and metal rectifier. Tungar Bulb type Battery Charger, single circuit 60 volts 5 amps. outpu $\mathbf{6 1 3 / 5 / 0}$. Double circuit 60 volts $10 \mathrm{amps}, \mathbf{E 2 0 / 0 / 0}$ CABINETS.
All metal ex-W.D. with rest for panel, 9 in. x gin x Bin. deep with hinged lid, two fasteners and metal loops for carrying strap, $12 / 6$
MOTORS.

Electradix Micro Motors for instrument work and models 2 in. x lin., weight only 10 ozs. $12 / 24$ volts; work from dry cells or A.C. Main
through transformer, laminated fields, ball bearing totally enclosed, small vee pulley, centrifuga relay speed governor on shatt removable for second shaft drive. Precision made ex W.D. stock. Worth 45/\%. Price 21/- each. Limited

METERS
ronclad A.C voltmeters, G.E.C. 4in. switchboard, $0-60$ volts, 45/. Ammeters to match, $0-40$ amps., $45 /-$. Frequency meter $40 / 60 \mathrm{cy}$. Crompton F.G. Ironclad switchboard, so volts $6 \frac{1}{2}$ in. $\times 6 \frac{1}{2} \mathrm{in}$. $\times 4 \mathrm{in}$. With lamp on top to inuminate dial, 65/5. Ammeter to match, $0-50$ amps. A.

TELEPHONES.

Wall type constructors' parts, ex-G,P,O., comprising cabinet $8 \mathrm{in} . \times 6 \mathrm{in} . \times 3 \mathrm{in}$., bracket mike, transformer and condenser, mag, bell, switchhook and contacts, hand mag., ringer P.O. type receiver terminals and connection diagram, 35/- per pair

ELECTRADIX RADIOS

214. Queenstown Road, London, S.W. 8

Telephone: MACaulay 2159.

BATTERIES
HXIDE car batteries, as new, unused. 6v 100 OYNAMOS, MOTORS. ETC. Leicester

BENMOTORS, new and unused surplus bar gains, at fraction original 2 TELESCOPES , onerf, adustable $21 / 4$ in lens, ex-Naval sighting, beautitully made, in Aitted case, or send $90 /=$, carriage骂 DYNAMOS, 24 volts, 1,000 watts, 9 in by 7 in , $3 / 4 \mathrm{in}$ spindle, or send $80 /=$, carriage paid $75 /--230 \mathrm{v} / 1 / 50$, l/5hp electric motors. in carriage paid. 40/ carriage paid
HOST other valuable equipment, lists free BENMOTORS, Summerley St., Earlstidd S.W.18. Wim. 3833 (100yds S. Rly., Electric
$[9594$ M OTOR, 440 volt, 3 phase, $1 / 9 \mathrm{hp}, 4$-step pu!
RROMPTON PARKINSON rotary converte:
(220 volts dc/ac, 0.45 amps, 50 cycles. filtel
2710 .-Box 6266.
convertor. 240 v d.c 220 v LA a.c, 90 watts, in case with filter, new \& 4 -New d.c. dynamos. 24v 158 mps. standard type shape. size with laminated poles, ball bearings. also $15 /$ - voltmeters, m.c.
jov, 3 in dial.-B. E. R., 39. Brighton Rd., Bir30ngham. BATTERY chargers for home and export. vostage; generous tiade terms; write for cata El. Hoddesdon 2659 . The Banner Eiec tric Co., Ltd., Hoddesdon, Hert.s
D.C. to a.c. motor aiternators. $200 / 250$ volts phase 200 watts, screen pro phat bail bearings, new; £12/10 each. John on Engineering, S19. Kennington Rd., S.E. 11 . Reliance 1412-a 6 k a alternators, new and unA used, output 230 and 110 volts at 500 cycies, voltage tor fied excitation needed 12 voits at 9 amps; ideal for lighting and heating; price, less exciter, $£ 9$.-Chartes Leatherbarrow. Lid. ROTARY converters, ex-A.M. new, input 1 24v d.c.. output 230 v a.c. $100 \mathrm{watts}, \mathrm{E}^{2} 5$; 4BA m.s. still nuts, sing nuts, $12 /$ - per 1,000 ; 2BA brass metal screns, in per oke-on-Trent Radio, volt 3 -phase motors from $1 / 10$ to 6 hp 10 approx, 1,000 r.p.ni.. spectamy denerators; from $30 /-$ to $\pm / / 10$ each, limited number; tors; from $30 /-$ to \pm generators, as new, reduced from £57 to £s5 each.-Bird Cottage, BathampGMASHING prices $4 / 6$ eacis, ball-bearing d.c Mond gor generators, input 24 volts, output 200 volts, 50 ma, asso 12 volis, 200 or chaver run as 12 , 24 or 200 volt d.c. mapprox. \&5; post and packing 1/-,Jack Porter, Ltd., Radio College St. Worcester
CA.P. stationary engines, model 4B, 2 hp , J.A.P. carburetter with adjustable governor, fywheel magneto, complete on base with petrol tank, etc.; suitable work, and compressors, pumps, and tested before despatch price \&17/10, plus 12/6 carriage.

Ltd., High [9512 36 watt Lyon Norman lighting and chart prising ohv 4 -stroke blower cooled petrol engine with governor, ht magneto, directly coupled to dc dynamo, suitable complete control paner, inclusis ance petrol tank out, fied ruse and suitable for small house and exhaust system battery charging etc.; built to M.A.P. Specification; now and tested before despatch; price $\delta 27 / 10$, pus $20 /$ - carriage. St. Teddington. Kin. 1193-4. 19511 GANGAMO synchronous motors, seli-starting, watts. size 2 in diam, 2 in deep, geared 1 rev 60 min , can be reset to zero by friction drive from front or back, to run clockwise. Ideal movements for making electric clocks. time switcher etc. nickel-plated finish. compete with to l dial traln, price $25 /$ - each. postage 6d; Sangamo as above, final speed, rev per min, iess dial train. ideal for dark room. process timing, etc. price $22 / 6$ d.c. dimensions 6 in long, 5 in 12-24 volts a.c.-d.. wide made by Loover. Ltd. price 40 /- each. wide, made by Hoover, Ltd.. price $40 /-$ each. postage 12 V 3i,amp. d.c. 16 volts a.c.: new in original packing. price $20 /-$ postage $1 / 6$: blower motors, $100-115$ volts a.c.-d.c.eters. fitted Sangamo synchronous motor, with gear train one rev $1 / 10$ th per hour to 10,000 hours recording. ideal for process tuming. etc., in bakelite cases,
price $35 /-$ each. postage $1 /-\quad H$ Franks, 58 New Oxrord St.. London, W.C.1. Phone: Mus
9594 .

Y(1)

can become

a firstochass RADID ENGMNEER

We are specialists in Home. Study Tuition in Radio, Television and Mathematics. Post coupon now for free booklet and learn how you can qualify for well-paid employment or profitable spare-time work.

T. \& C. RADIO COLLEGE

King Edward Ave., Aylesbury, Bucks.

(Post in unsealed envelope, $\mathrm{L} d$. stamp) Please send me free details of your HomeStudy Mathematics and Radio courses.

NAME
ADDRESS
W.w. 71

THIS USEFUL NEW FOLDER.

 range of tells you all about the complete Soldering Irons, for the standard voltage ranges of $200 / 220$ and $230 / 250: 65$ watt and 125 watt models fitted with ovaltapered bits or pencil bits and 240 watt models fitted with oval-tapered bits are available.Write Today for the new folder ref. Y. 10

A LL types of rotary converters, electric motors. A battery chargers, petrol-electricic generartor output $600 y$ at 250 ma . price $£ 410$ each nett. post pald. J.A.P. No. 2A engines. 1.2 bhp at 1,600 works.- Ward and ready for use $£ 17$ nett, ex folk. Haverhill $253-4$. Trievisoo valves
1 tew on y, $9 / 6$ eat - unu 6271 R.A., 6AC7's

 M 1 . USA tyyes IR5, IT4, 1S5, 1S4. 4 valve. Cossor and Osram, 100-120 yolt 4 -pin, 19518 Ltd. Rtabilsers, 4/6, postage 6d.Jack Porter. Lid. Radio neolege St., Worcester.
 $9001,9002,10,-2 \times 2 / 879,12 ;-120$, Wyehali BRITISH valves, new and at list prices. other difficult types: AC2PendD, 6A7, 35L6, and all components. Jones, 21a Globe Rd. and E. Ste. 4071.
VR150 30 VR105, 19630 $\begin{array}{rrrr}\text { VR150, } 30, & \text { VRR105/30. CVI8(RK34) } & & 10630 \\ 6 A G 7 . & 13 / 6 ; & 6 A C 7, & 8 / 6 ; \\ 6 S G 7 & 6 / 6 ; & 0-350\end{array}$ ma or $0-1 \mathrm{amp}$ thermo couple radio frequency meters, 6/6.-A.C. Hoile, Well St., Loose, Maid-
stone. (Tel. 83579 .) 1.OOO (Tel. 83579.)

PLAYING DES AMPLIFIER SPEAKER

The PA-Gram combines all three. A AMPLIFIER WITH SPEAKER, PICK-UP, MO1 COMPLETE. Contained in two leatherette c PRICE ± 37 (ex-works).
Other styles to select from are $A C / 19, A C / 19$ $A C / 27, A C / 30$. Steel case portables, for mi gram. BASS \& TREBLE BOOST CIRCU Leatherette speaker cases for $10^{\prime \prime}$ or
Prices (without speaker) 70/-.
QUALITY AMPLIFIERS ETC
TRANSFORMERS FOR ALL CIRCUITS. (Catalogues 3d.)
general lamination products lt
294, Broadway, Bexleyheath, Ke
(Bexleyheath 3021.)

PLAYING DES AMPLIFIER SPEAKER

GRAMOPHONE MOTORS:
 YET ANOTHER DELIVERY ENABLES US TO REPEAT LAST MONTH'S OFFER. AVAILABLE FROM STOCK. OFFER. AVAILABLE FROM STOCK. MOTORS, A.C. 50 CYCLES, 200/250 VOLTS. AUTOMATIC STOP AND START, COMPLETE WITH I2in. TURNTABLE AND MAGNETIC PICK-UP. E9, INC. P. TAX, PLUS 5/-POSTAND PACKING. IN THIS INSTANCE, CASH WITH ORDER ONLY PLEASE.

We have the largest and most comprehensive stock of Radio COMPONENTS.

DUBILIER DRILITIC CONDENSERS 8 mfd .500 v ., $4 /-; 8 \times 8 \mathrm{mfd} .500 \mathrm{v} ., 6 / 6$; 8 mfd .5
$16 \times 8 \mathrm{mfd} .500 \mathrm{~V}$., $8 / 6$; and a host of other capacitors, by other leading manufacturers. VALVES. Tremendous stocks of all types, including 6A7, 14/10; DK 32 (|A7), $13 / 11$; DL35 (IC5), 12/-; DF33 (IN5), 12/-; DAC32 (1H5), at $10 /-$
All enquiries for other types will be promptly dealt with.

MIDGET B.F.O. UifiT. Comprising ISS Valve, midget B.F.O. Coil in can ($465 \mathrm{kc} / \mathrm{s}$), 8 midget resistors and condensers, the whole complete in aluminium can, size $4 \frac{1}{2} \mathrm{in}$. x 2 点in. x lin. Only $12 / 6$.

Send stamp for current list

HENRY'S
5, HARROW ROAD, W. 2
PADdington 1008/9

NIVERSAL gram motoi. £5; S.T.C. studio
mike. £15; Meico M.C. mike, £4, Rothermike. £15; Meico M.C. Mike, £4, Rotherit 220 v d.c.a.c. converter, 66 coil M.C.
 ${ }^{\text {ECliAL }}$ droducts division. All types of difthcutt A.F. ampuifers built to order, pllfiers with very low distortion contents, iremney range down to cycie/sec, al taburatory plitier for specha
nonstration. etc. A. Eng. Cawkel1, Electro-
oustics Engineer, 7 , Victory Arcade. The Jadway, Southall. Middx. 19721 -ADIUGRAM cabinets of modern artistic cesign, beautifully constructed by craftsin, wanut veneered and highay poished, ted lid, complete with baffe and auto-stay, 5, carriage etc., $25 /-i$ also varied seiection
radiogram chassis, moturs, players. speakers. k-ups, annus., etc.; s.a.e. full delailed list.-
idio Unifmited, 16 . Carnarvon Rd.. Leytion. 348 new Polytone super electric gram on type, 10 in non-magnetic turntable, constant eed auto stop, adjustable to any pick-up, 1 m level nil, silent motor, suitable cor hith dee 14 inx inn black ripple finish; $27 / 15$, carage pald, llmited supply, nited with Rothermel age paid, Connoisseur pick-up; £3 and $£ 3 / 15$ iew, Bristol Rd., Whitchurch, Bristol. " 9983 MPLIFIER measureinents.-We can put
your amplifter throukh a series of rigid coratory tests. including square-wave testing ranslent response, distortion content, interroduation tests, response curves. etc., and all he usual standard data, results given numeric11y, graphicaliy and photographical manufacor test schedules and auotal amateur division) urers and amateurs (ectro-Acoustics Engineer, ${ }^{7}$ A. Iictory Arcade. The Broadway, Southall. Moto $R_{\text {ECORD-PLAYING }}^{200-250 v}$ ac. B.T.H. nas. ne case. prand new. $£ 910$; photo-esectric cell sit. photo-cell in hood, with flttings, 25 350v, mains transformer. with 6 ; rotary trans-hermo-ammeters, 0-6a, 300 V 6.5 v out.. brand tormers, 20 v dc input, 30 -watt ac. m / c mike new, $5 /$ woden amplifer. 18 in Baker speaker in cabinet. less and stand, 10 hours' use since new, £25; postake extra. \rightarrow Adans Radio. Long Buckby. Rugby 19671 M in carton. $\mathrm{E}^{275 \text { : } 1132 \text { new and power pack. }}$

 generator. 420 to $600 \mathrm{~m} / \mathrm{c}$, $\mathrm{C} . \dot{W}$., square wave and pulse modulaion, 50cycle inains, $£ 5$. Phileco T43, new manuals, leads, $£ 65 ;$ R.F. 26
convertor, new: $£ 4$; BCgo6c
frequency meter. 14 to $23 \mathrm{~m} / \mathrm{c}$. new, \&8; BS610 Y.F.O, and crystal unit. 3-5inc, new, £1 $1.000 v 380 \mathrm{ma}$ power mit. U.S.A. illament and 12 v d.c. for relay and mic. supply, 115: rack 88D R.C.A. new condiion. £50; boxed 808s R.C.A., $12 \mathrm{ny} / \mathrm{c}$. new. £ 5 ; latest type ${ }_{B S 221}$ model SCR-2l1-A.K., new. with spare vaives, crystal and correct phones. 2 manuals ans calibration clart, £30; Weston analyzer. attention. movement o.k.. £6; unused U.S.A. 1130 A signal generator, ni.o. or crystal cw., or Mod 100 to $155 \mathrm{~m} / \mathrm{c}$, . 10 ; new 30 min spocl. 0.004 recelver whe $\$ 5$; highest offers on above secures: Acetate 7 in recorder discs, Memovox, 1/6: Soundscriber, 7 in discs, by Wllcox Gay Corp, $2 /-;$ all above U.S.A. make, a vallable in quantities, Morse oscillators, 2 -valve variable
note, $£ 1$ - Box 6365 . note, TRANSMITTING EQUIPMENT

F^{0}sale. complete 10 -watt p.us station, 600-0600. PX25AS speech. 2-3 band. stored since
wlew Leeds-Bradford.-B0x 6285 1939: view Leeds-Bradiord, Box in pert order, £55; crackle tinish, with 110% to 250 p power units Primiose 8346. EST EOUIPMENT 19591 H YDROMETERS, unbreak. MaSS
H. R.A.F. $3 / 6$ or $30 /-$ doz-Below. new ex METER bargalns! All brand new, boxed, in, 5.000 volts. $31 / 2$ in thush mtg, $30 /-;$ ammeters M.I.P.. $0-20 \mathrm{amps}$. 2 , in hush, $10 /-$ millian meters, Saneamo weston. Ferranti ditto, $0-200$ n.ale 7/6. Below. type 3 contain 2 comu Wisual Indicators type mo micro amp movements in bakelit wase. with $2 \% i n$ dial. 2 scales. 2 lamps and case. With s .b.c. holders. brand new boxed; $7 / 6$.- Below WEE Meggers, 250 volt. brand new comp. In
 St. Albans Ave London W. 4 . round. flush. ex Vi A.M., new, $18 / 6$, c.w.o.-F. R. Little, N WVER seen a radiu wave?-You can with our cps., new olifillorcoper tine to 0.2 mc, optlonal beam blanking, only two valves, rec. and any 3in tube. 6a. $2 / 6$. from E. N. Bradley, Whinnte Knowe. 6a. 2/6, from E N. Bradley, Whin
Sennen, Comwall. S.a.e. for lists.

Armstrong

Model RF103

10 valve all-wave Superhet radiogram chassis.

SPECIAL FEATURES

- 10 VALVE CIRCUIT.
* R.F.PRE-AMPLIFIER.
* WAVE BAND EXPANSION.
* large glass scale.
* 3 STAGES A.V.C
* TREBLE LIFT CONTROL.
(Operates on both radio and gramophone.)
- PLUS 6 db . BASS LIFT ON GRAMOPHONE. (To restore bass cut on some records.)
$\star \quad 10$ WATT PUSH-PULL OUTPUT.

To export buyers we can confidently recommend RFI03 to any firm abroad who contemplates making a high-grade Radiogram or Console radio receiver.

The lively short-wave performance coupled with the excellent yuality reproduction ensure an outstanding performance.

We will gladly make any alterations to the specification to meet individual requirements.

To home buyers demonstration model now available to interested callers to hear, and technical specification now available on request.
It is hoped that a number (very limited unfortunately) will be available for early delivery.

The above model is for A.C. Mains.
We also have a similar model Type UNI 103 for DC/AC Mains.

> ARMSTRONG MREEESS\& CO. LTD. NARLTERS ROAD, HOLLOWAY, LONDON, N.

E $\stackrel{\mathrm{F}}{\mathrm{E}}$

R sale, B.P.L. oscillator, all ranges, mains stead Ave., Wembley. estmeter, new; Taylor 85a 20,0000pv with capacity-inductance R.C. audio oscillator, $30-30,000 \mathrm{cps}$, laboratory R built and calibrated to 0.1% accuracy I Niversal Junior Taylormeter, £6, almost Unew: d.c. Avominor. $45 /-$; also kit tools. PRAND irons. etc., cheap.-Box 6404. 13 oscillorraph in wooden carrying case: nrim £150.-47. Codsall Rd.. Wolverhampton. [9676 DHILIPS cuthode ray oscillosoose. GM3152. Darnick Rd. Sution Coldfeld. ni. Bham. Darnick Rd. Sutton Coldfleld. nr. B ham.
$\mathbb{F}^{\text {OR sale. Mulard type } 7629}$ valve tester with
adaptors and approximutely 600 cards, test equivalent charts capacity voits and current cards, offers. Box 6281
KSULATION testers. 500 v . 20 meg. int. meters $0-10$, 100 s . 15 172. Cariton Ave. U NIVERSAL Avo new, unused, $£ 6 / 10$: Labgear Hunts bridge C.R.B., 15 ; all as new.-R. Bell. West Rd.. Annfield Plain. Co. Durham. |9695 ODEL 339 A Cossor oscilloscope. 2 spare
double beam tubes, $£ 30$ or offer; R1155 with valves. ©8; Amerlcan ex-service vaives. all CR100, as new, S, meter and A.N.L., £40: fect. $£ 22$; 1481 for 5 metres. new. $£ 15$. GBCD 6. Hilhcroft Cres. Almondbury, Huddersfield. - unlversal meter combination valve tester ohm-meter, Trip'ett 650-SC output meter: new condition: frist $£ 25$ secures.-Beckerleg Horrabridge, Devon.

COSSOR 343 oscillator and 339 double bean and oscinoscope, complete with all accessories been instruction manuals, for sale, the outfit has used twice and is in perfect condition. Rd., Coventry. for sale, 1 model 3332 Cossor oscilloscope as how A, perfect condition. der, motor and photo electrle cells and mixe: in stee | 2ack, for $230-250$ volts a.c.. $£ 32 .-$ C. Lawson. 137, |
| :--- |
| Wellington St., Kettering. |
| 9755 | TELEVISION engineers.-Here is something vision pattern manage without, wide band television pattern generator; the only way to check vision and sound receivers satisfactorily,-Fult details apply W. B. Martin, Television Engineers 206-208. Lower Parliament St.. Nottingham UPLANS have redesigned, modernised and

reissued their No. 2 sisnal tracer; a new
 probe, new m.e. circuit With double sensitivity, high gain and poweriul l.s. output give visual Ask for Plan 2a, still only 2/6, from e. N. Brad-
ley, "Whinnie-k nowe." Sennen, Cornwali. 9592 M ARCONI-EKCO iype T.F. 373 universal impower meter £20; type TF 428 valve voltmeter £20; Cossor double beam oscilloscope. type 339 A . £ 20; Genera! Radio type 516-B B.F.O.. £15; Airmec staniard signal generator, £55; Taylormeter model 83 A . £12: all in excellent condition Bradley. 67. Wyresdale Crescent, Perivale.
Middesex R ADIOLAB valve tester: 2 parts, \&8; Grampian moving coll mike with heavy chrome stand and transformer, £6; Goodmans 12in speaker capaclty analyser, model C.R.B., $£ 11$; 535 service sheets. first-class condition. catalogued, $£ 8$; cathode ray tube, $25 /-$; selenium Sen Ter Cel rectifier ${ }^{\text {\&2 }}$. or offers.-Fraser. 51. Summerhouse
Drive, Bexley. W AVEMETERS, $15-2.500 \mathrm{kc} / \mathrm{s}$, Adminalty preW cision type, G62A, by Marconi, individually calibrated-calibration curves cover some 30 ft . these wavemeters. using 9 valves, contain 100kc's crystal in thermostaticaly controled oven 230 y 50 cycle. followed by variable beat oscinlator and qudio amplifier reding mixed ampmier stages.
 valves Moorend Lane. Brimingham. 24 . 19562 OUR last chance to secure an oscilloscope
for $10 /$, final clearance; ex-W.D. indicator unit in steel case. hinged glass window, less unit in stee contain a number of components: an ideal foundation for building an oscilloscope anly $10 /$ - each; a few with 3 valves at 15/telephone stand dest microphones, 10%, hand telepe with switch, 7/6; Polystyrene solution, pint tins, $7 / 6$, exposure meters,
wavemeters, $160-220 \mathrm{~m} / \mathrm{cs}$ square, less $0-1$ meter and 6.55 valve. $15 /-$ carriage $5 /-i 500$ cycle $1 \frac{1}{4} \mathrm{~kW}$ alternatols. $£ 25$; high speed universal moto weight 18lbs, $£ 3$. 000 , halt-wave power sup-$300-460 \mathrm{~m} / \mathrm{cs}$. 5 , $£ 5$ plus $10 /-$ carriage; searchphes, in cabht, ex-naval, e3; 'in co-axial cable ig-a yard; TR 351015 -valve, $160-220 \mathrm{~m} / \mathrm{cs}$ trans. mitter-leceivers. brand new. $£ 3$. contain 15 valves. 85 plus $10 /$ - carriage; I.F.F. signal s.a.e for W.W. bargain lists.-.Amateur Radio
Service, $G 6 H P$. Canning St. Burnley.

Abstract

\section*{LASKY'S RADIO}

\section*{VALVE MONTH.}

A FEW EXAMPLES OF OUR TREMENDOUS STOCK OF RADIO VALVES. BRITISH, AMERICAN, AND WE HAVE THE TAPES, ALL AT B.O.T, PRICES WE HAVE THE VALVE YOU WANT CBLI CEN4ODD, ACO44. PE UY21, EZZ35, PEN36C, FC13C, SP13, CY1, SP2, YH2, EBL21, ECH21, AZ31, UR1C, EF36, EF37, EF38 EF39, EM1, EM EM34, EL 33 , ELAK, HVR2, HVR2A, EL 38 , EF9 EK32, CCH35, VP4B, DF91, HVAF91, DL4. D K91 DO24, DO30, QP22B, TH30C, FC2, FC2A, DKF12, DF'33, D L35, VP13C, VP1SA, UR3C, V'2H, EFF5, AMERICAN TYPES. $35 \mathrm{~L} 6 \mathrm{gt}, 3 \overline{5} Z 5 \mathrm{gt}, 35 \mathrm{Z} 4 \mathrm{gt}, 3 Q 5$ $1 \mathrm{~A} \overline{\mathrm{D}}, 128 \mathrm{~A}, 5 \ell 4,6 \mathrm{FG}, 6 \mathrm{~V} 6,6 \mathrm{~L}, 25 \mathrm{~A}, \mathrm{Gg}, 2526,43,42$, $41,80,84,77,38,6 \mathrm{D} 6,6 \mathrm{Cd}, 6 \mathrm{CC}, 37,6 \mathrm{~A}, 6 \mathrm{X} 5,0 \mathrm{Z} 4$, 68N7, 647, $1127,607,128 \mathrm{K7}, 78,657,6 \mathrm{~A} 8,50 \mathrm{LK}$ 12 Cs . 6J5. 6C5, $25 \mathrm{Y} 5,1 D 6,12 \mathrm{~K}$, 12 K 7 , $6 \mathrm{AG7}$ $7 \mathrm{C5}, 14 \mathrm{AT}, 68 \mathrm{HF}, \mathrm{6AEG}, 1 \mathrm{~A} 4,39 / 44,6 \mathrm{SF} 7,6 \mathrm{R7}, 117 \mathrm{Z6}$, OSRAM, MNH0, KT33C U3 OSRAM, MX40, KT33C, U31, Y63, W76, U52, D63, BRIMAR, $8 \mathrm{~N} 2,9 \mathrm{D} 2,1 \mathrm{D}_{5}, 1 \mathrm{D} 6,25 \angle 4 \mathrm{~g}, 6 \mathrm{~A}$ (G6 $15 \mathrm{D} 2,15 \mathrm{D1}, \mathrm{k} 1, \mathrm{R2}, \mathrm{RB}_{3}, 5 \mathrm{~F}_{4}, 5 \mathrm{~V} 4,5 \mathrm{U} 4 \mathrm{~g}, 12 \mathrm{~K} 8$, 5 Yag, $80,83,84,024,6 R 7$. MAZDA, AC2PENDD, YEN453DD, UU6, VPI33, TPど, SP41, VP41, H'L41DD, HL23DD, PEN2 1001, $10 \mathrm{Pl} 1,10 \mathrm{~F} 4,101 \mathrm{D} 11$, HL1320. COSSOR. 202STH, IISTH, 2 P. MVSPENB, DDT $41 \mathrm{MXP}, 4 \mathrm{TPB}, 202 \mathrm{VPB}, 202 \mathrm{VP}, 210 \mathrm{HF}, 431 \mathrm{U}$, 138PA. 13VPA, OM4, OM10, OM6, $41 \mathrm{MFL}, 41 \mathrm{MTL}$, TUNGSRAM PPA5DT, $230 A P, 215 B G, 4 T H A$. TUNGSRAM. PP35, EF8, VP4B, P1'13A, 25AGg, 18, 42, 43, 6A8, 6A7, 6B7, 6F7, 1PP4116, AS 1125 , As $120, \mathrm{H}^{2} 210$, BR201, HL4, HL2, APV4. ALL ENQUIRIES DEALT WITH TMMEDLATELY. TERMS: C.O.D., CASE WITH ORDER, OR PRO SEND 1d, STAMP FOR OUR CURRENT LIST OF RADIO COMPONENTS AND BULLETIN OF EXGOVERNMENT BARGAINS.

LASKY'S RADIO 370 Harrow Road, Paddington, London, W.9. (opposite Paddington Hospital) Telephone: Cunningham 1979 Hours : Mon. to \$at. 9.30 a.m. to 6 p.m. Thurs. half day.

NEW G.P. 12 CRYSTAL PICK-UP with permanent sapphire stylus -was fully described in The Wireless World's recent article "Crystal Pick-ups-Basis of Design for Fidelity Reproduction."
This remarkable pick-up, which represents the ultimate in bigh-fidelity reproduction, is now available in limited quantities through your radio dealer, price $96 /$ incl. P.T.

FREE ILLUSTRATED FOLDER describing this new pick-up may be obtained by returning the coupon below.

TO COSMOCORD LTD. ENFIELD, MIDDX.
Please send folder of ACOS Pick-ups. NAME
f ADIDRESB

COMPONENTS-SECOND-HAND, SURPLUS CHARLES BRITAIN (RADIO), Ltd. BRAND new mains transformers. semi-
shrouded drop-through type. $350-0-35080$ shrouded drop-through type, $350-0-35080$
mils 5 volts $2 \mathrm{amps}, 6.3 \mathrm{volts} 3 \mathrm{amps}$, price $21 /-$. mils 5 volts 2 amps, 6.3 volts 3 amps, price $21 /-$
plus $1 / 6$ post: brand new Rola G12 12 in P.M. plus $1 / 6$ post: brand new Rola G12 12in P.M.. new Rola 10 in P.M. 30/-; 4 -gang 0003 condensersang ceramic insulation. ong spindle. $4 / 6$ ea. $1,000 \mathrm{v}$ wkg. mainsbridge $5 /-3 / 6$ ea.; 4 mfd sistors, all brand new, wire end, $12 / 6$. MOVING coll microammeter.
2% in scale, $0-250$ microan ps made by Weston ance, 330 ohms, brand new and boxed, Send for component list. 2d. stamp please. CHARLES BRITAIN (RADIO), Ltd, Radio House, 2, Wilson St., E.C.2. Tel. Bis. 2966 SOUTHERN RADIO'S wireless bargains.
RADIO publications.-" Radio Valve Manual British and American alternatives and eauiva lents, 3/6: "Frequency Modulation Manual." previously advertised still available, full list prevlousis advertised still available, full list
21 mod, postare on books 3d. A.C. motors. $200-1$ 250 volts. 1/h ho 2.000 rom . consumption $1 / 2 \mathrm{mp}$. ideal for light work, brand new, $55 /=$ blus $5 /-$ carriage. R.A.F. bombsight computors. brand gearing. counters and hundreds of other components. \& 3 carriage naid. R.A.F. RT testers 2.500-6,700kcs-45-120 metres, two valves. in metal carrying case, $16 \mathrm{in} \times 10 \mathrm{in} \times 6 \mathrm{~m}$. $20 /-$ Teleohone line units with rectifiers. relays. etc.. in Wooden box. 5/-i ex-Army headsets (mike and moving coil ohones). 12/6; input transformers. $1 / 50$ or $1 / 7$ mu metal. $5 /$ each: di2/6. post 4d: special offer double-sided record 2/6. post 4 di special offer double-sided record-
ing discs. $51 / \mathrm{min}$. $1 /-$ each. $10 / 6$ doz: ex-Govt ing discs. 5 inin. 1/- each. $10 / 6$ doz: ex-Govt. 3/6: ex-Army pared dial drives. $4: 1$ ratio. 3/6: hundreds of other bargains for callers. St.. London. W.C.2. Gerrard 6653 . 19824
A. RADFORD, $28, ~ B e d m i n s t e r ~ P a r a d e, ~$ A. H. RADF

CRYSTAL diodes; genuine Sylvania IN22s, ideal tor crystal sets (see W.W.. April, 1948), monitors, noise limiters, field strength meters, etc.; $2 / 6$ each, 10 for $\& 1$, post free; vibratois units, 12 v input, output $120 / 150 \mathrm{v}, 50 / 30 \mathrm{ma}$, including G.B. and L.T. for battery valves, U.S. made by jefterson and Travis to AM specification; 19/6 each, plus postage; R.C.A. H.T. transformer, 1.75 kva input $190 / 250 \mathrm{v} 50 \mathrm{cps}$, sec. $2.300-$ $1.750-0-1,750-2,300 \mathrm{v}$ (for nominal outputs of size 9 in $\times 91 \mathrm{in} \times 71$ in: 880 ma), welght 97 lb net, size 9 in $x 9$ or output transformer primary moduohms (suitable P.P. 810, 805,' TZ40, 813. ec.). weight 67 lb net, size 9 in $\times 9 \mathrm{In} \times 7 \mathrm{ln}$; $\mathrm{L6}$, to each: R.C.A. modulator unit, comprised mod. trans, as above, driver trans. filament trans. valveholders and balancing controls for PP805 walves on chassis, wired ready for use, input $190 / 250 \mathrm{v}$ $50 \mathrm{cbs} ; £ 9$ each: R.C.A. speech amplifier innut 190/250v 50cps: valve line up 4-687s. 2-6i.6s. 1 5U4G, resistance coupled P.P. 25 watts outpur. standard input and output impedances. will feed modulator unit above, in brown crackle case
with valves; $£ 13 / 10$; L, F. chokes. 250 ma . $10-1$
 $61 / 2 \mathrm{lb} .10 / 6$ each; $30 \mathrm{ma}, 100 \mathrm{~h} .4000 \mathrm{hms}, \mathrm{C} . \mathrm{T}$. 3 ,2b, $6 / 6$ each; 500 ma . $15 / 20 \mathrm{~h}, 80 \mathrm{ohms}$. 20 lb , 35 ,- each, plus carr; $8+8 \mathrm{FF}$ electrolytic condensers, square can type with fixing feet, guaranteed, $5 / 6 \mathrm{e}^{n \cdots}$ o/- per doz, plus postage Silver-plated Ewing Lee type plug and socket 5-pin, complete, $2 /-$ per pair, $30 /-$ per doz, plus $^{\prime}$
W ILSON'S 6 waveband coil unit, completely
 gow, W.2. COIL formers-All types to meet your require19. ments; good deliveries.-Tavak Products.

NEWTONS 4 -circuit rectifier. $72 \mathrm{v} .10 \mathrm{a}, 300 \mathrm{v}$. 29. Silver St., Thninster. Som. ${ }^{2}$. ${ }^{2}$. Hewitt EXPERIMENTER proceeding overseas selling Uxendon Cres. Wembley, s.a.e. tor list-26 A MERICAN and British surplus service radio A gear; recelvers. I.F.F.s. amplifiers and components;
Humberstone R.a.e. for list to G3DRZ, 289, B. \& H. RADIO. Only good components of well-known makes supplied, everything
kuaranteed. newcomer's welcomed, trade only kuaranteed. newcomer's welcomed, trade only;
stamp for list.-Huntley St., Darlington 2198 . COMPONENTS and valves for constructors
and amateurs; special - and amateurs; special terms to radio clubs. Deansgate, Manchester. 3 . ${ }^{\text {Co. Send for }}$ Wood St. 1 St. HIGH stability resistances, 1 watt $\quad \pm 1 \%$, 1.0, 1.1 and 6 meg ; up to 800 ot each pure ford 2980 , 28 re , 46s.w.g., 2841b.-Tel. Dart-EX-STOCK, output tansformers, mains transamplifier, as per "W. World.: May, 1947 . Metropolitan Radio Service Co. 1021 , Finchley
Rd., N.W.11. Tel. Speedwell 3000 .

BAKER 'Selhursi Rerdio $=$ hIGH FIDELTTY SPEAKEI

Est. 25 years
The Pioneers of Moving Coil Speakers
GLNEMA Model, 18 inch - - $£ 9196$ AUDITORIUM Model, 12 inch - $£ 610$ SINGLE CONE, 12 inch

Send $2 \frac{1}{2}$ d. stamp for illustrated list
BAKERS 'SELHURST' RADIO 75-77, Sussex Road, South Groydon, Surrey Telephone: Choydon 4226

ALEC DAVIS Supplies LTD.

18, Tottenham Court Road, LONDON, W.1.
 SURPLUS

METERS :
0.5 amp. sangamo Westou Thermocouple meters. 2in ${ }_{5}$ square face type. New and boxed. $7 / 6$ (postagc 6d.) square face type. New and boxed. $7 / 6$ (postage 6 d .). CONDENSERS :
Bakelite cased high voltage condensers. Postage .2 mfd .200 v . d.c. wkg., size 1 gin. diam. $\times 3$ in.
long
${ }_{3 \text { min. }}^{2} 2,500$ v. d.c. wkg., size 1 kln . diam. \ddot{x}
34 in . long
1 nifd. 1,500 v. d.c. wkg, size lind diam, $\times 2$ inn.
long
13 mfd .600 r. d.c. wkg., size $\frac{1}{2} \mathrm{nn}$. diam. $\times 22 \mathrm{kin}$.
.03 mf
O long $\quad \cdots \quad$.. $\quad 6 d$
$2 y_{i n}$ long 000 . $6 d$
01 mfd. 3,0
MISCELLANEOUS
Exide new and unused accurnulators in moukled case. Size 2 sin. square by $6 \$ i w$. high- 2 -volt type, 76 (poscage $1 /$
Inert cells, 15 .volt type. Size 9in. by 1 in by 3 ist,
$1 / 6$ (postage tid.). Set of four l5.volt cells in $1 / 6$ (postage bi.). Set of four 15 *volt cells in sealed can, $5 /$ - (postage $1 /$-)
Plessey 5 in. electrodynamic speaker with 4 obm. speech coil. Complete with transformer for
$4,500 \mathrm{ohm}$. load. An brand new, in real bargain 4,500 ohm. load. All brand new, it real bargain
for those in need of an extension speaker. $19 / 6$ for those in ne
(postage $1 /-$).
santon 30 amp. rotary double pole on/ofi switchnew and boxed. Price 7/6 (pontage 9 d .). Stockists of Valves, Batteries, Components and Test Equipment
Basiness Hours. 9 a.m. -5.30 u.m. Mon. Fri., 9 anm. Telephone: MUSeum 4538.

JDENSERS, $350 \mathrm{v} .1, .05 \mathrm{mfd}$, tubular, $3 / 9$ per doz, 43/- per grossi cash with order R1AL rods. whip aerials. coppered molyb denum steel. $1 /$ in dlam. 4 ft long, with $\mathrm{n} \times 2 \mathrm{in}$
IAL screened lead-in. Z3in cable, 18 ft long onn
IAL guyropes. compris. 4 25ft lengths $1 / 8 \mathrm{in}$ S; 5/-Below
DENSERS Maper tubir 1 . mfd -Below TROL units, type $280.7 \mathrm{in} \times 5 \mathrm{in} \times 3 \mathrm{in}$ metal contains
MER SWitches, 12/- doz; terminal blocks, 2 smal. 6/- doz; 3-way, lalger. $10 /-$ per 100 Below. DPHONES bargain! Double, batanced ature diaphragms, double headnands, 8 ft 3 and jack-plug, dc resistance instruments ${ }^{\text {a }}$ chewp lightweights), huge purchases, ex$y_{\text {Ordnance air-conditioned stores, } 10 \text { prs. } 35 /- \text { or }}$ prs. $\dot{\text { s. }} 15$ (calr. $2 / 6$ per case) ; export enies invited; these headphones are worth ut 42/- pr..-Below approx. 1/h hp $200-250 \mathrm{v}$ ac Mor.p.m.. size 11 bin $\times 5 /-$; converted from low) transformers in $24 v$ 16amps. ou 30 v 200ma, brand new. unused. 40 (below) over made (see ubove motors 24 v . out 250 v 50 ma and ver unit. Murphy. in 24 .

CTIFIERS metal Westinghouse, 12v lamp

 w: $6 / 6,10$ for $52 / 6 .-$ Below out $6.75-0-6.75$qANSFORMERS, in $230 v$, out pams, new 130 to 150 type new ne 13 - Auto Col tions. Ltd. 15 Laytence St.. Northampes fully waterproofed aerials available, poles, lash , all types of feeder in stock; send for bro ures: aerials installed.-Wolsey Hellise Hill 1240
 or rod. $1 /-\mathrm{ft} ; 25$ and 15 watt lamps. 250 . 2nt. Axia fans. d c. and a.c. Nife cells. 5%,
R.S. cable. flexible. $23 / 0$ all less 35%. 19454 atson's. Peak Buildings. Bux capacity miniatur amplifiers with three tested $1 T 4$ midge amplifers each post free: in aluminium ise, $22 /-$ spare 1 Ta valves. guaranteed, $6 /-$ d.. Whalley Range. Mancheste

VOPPER wires, enamelled. tinned. Litz, cotwashers, soldering tags. eyelets; ebonite nd laminated bakelite panels, tubes. coil forhers; Tutnol rod; headphones, $11 e x e s$. etc.; lis a.e.; trade suppled. London, E. 4.

PROSFECTIVE buyers of radio component are invited to submit condensers, Systofex, netal rectifiers, varlable rheostats potentioneters, translormer laminations, etc. all in or further details apply Box 686
[9702
compon-

M^{1}ANUFACTURERS; huge stocks an compon-
ents. S, M, M/M, P.T. and block condenclose tolerance resistors and all types reistances, putentiometer, laminations, valve holw ders, glass cartridge fuses. $1 / 4 i n ;$ suppliers to leading manufacturers; Valencia Rd.. Stanmore.

$\frac{\pi^{\prime}}{\mathrm{K}^{1}}$Trims of radio receivers from $17 / 8 ; 4$ - and 5 valve, new materials, table modeis. semimidget, our for gramophone pick-up, extensions to loudspeaker. A.V.C.. 6 hours average time tor constructing; full details, diagrams with each kit; c.w.o. or c.o.d.- Isherwoods, Reme 3348 . Estd. 1936. RADIOCRAFT, Ltd. the Leicester stocks: Rotary converters. input 24y d.c., output $230 y$ a.c. 50 cycles, $100-200$ watts, in steel cases with carrying handle, ideal tor mobile ampliners at $£ 3 / 15$. Battery communications receiver, $5 v$ s'het, r. stage, 1 to 9 mc . in 3 bands. with 5 Mazda Octa tested and $\begin{aligned} & \text { valves, } \\ & \text { v }\end{aligned}$
BENDIX radio compass receivers, model. MN26C 3 BENDIX covering $150-325,325-695.695-1500 \mathrm{kc} / \mathrm{s}$ 2 r.f. stages, with 12 new metal $2-6 \mathrm{~J} 5$; $2-6 \mathrm{~N} 7$; 1-6B8; 1-6F6; 1-6L7); rotary con verter for $24 / 28 \mathrm{v}$ operation; complete with ful instructions for converting to a.c. operation, $£ 10$ standard U channel steel racks
4ft 10in high with base plates, 2, ex Gov. com
BARGAIN parcels; over 50 usetul ex-Go BARGAIN parcels, over so sy systooex, 72 yds ponents, our selection, resistor's and condensors, 25 asstd.. $5 / 6: 50$ asst.. $10 / 6$, 100 refunded without faction guaranteed lists free on request. Trade question.
FRITH RADIOCRAFT, Ltd., 69-71, Church Gate.

GALPINS

ELECTRICAL STORES, 408, HIGH STREET, LEWISHAM, ONDON, S.E. 13
Telephone: LEE GREEN 0309
(Near Lewisham Hospital.)

TERMS: CASH WITH ORDER NO C.O.D

MAINS TRANSFORMERS (AUTO WOUND). Voltage Changers tapped 10,20 , $25,90,130,150,190,210$ and 230 volts, all at 1,000 watts, a combination of 34 voltages can be obtained from this Transformer, new ex-Govt tock, $\mathbf{6 5 / 1 0}$ - each, carriage 5/-. Mains Booste Transiormer, tapped 0,6,10, 19, 175, 200, 220 225,240 , and 250 volts at 1,500 watts (new ex 200 volts input, 240 volts ourpur at 2,500 watts $\$ 7 / 10$ - carriage $7 / 6$. Another, 2 to 1 ratio 110 volts input, 220 volts output, or vice versa at 4,000 watts, $£ 12 / 10 /-$, carriage $10 /-$. Another 230 volts input, tapped output 40, 41, 42, 44, 46 47, 49 and 52 volts at 100 amps ., $f 15$ each, carriage 10/-. The latter two are double wound. Anothe auto wound, tapped $0,110,150,190$ and 230 volts 1,000 watts, $\mathbf{£ 7 / 5 / - , ~ c a r r i a g e ~} 5$

EX-GOVT. (G.E.C.) ELECTRIC FANS

 12 volts $A C / D C$ laminated field, complete with 5 in . impellor. New boxed, 20/- each, 1/- post Transformer to suiz 230 volts input, $10 / 16$ volts at 4 amps . output, $32 / 6$ each.EX-GOVT. (NEW) MAINS TRANSFORMERS, $200 / 250$ volts 50 cys. I ph. input 525/0/525 volts $150 \mathrm{M} / \mathrm{amps} .6 .3$ v. 5 a.. 5 v. 3 a. output standard rating, $35 /-$, post $2 /-180$ ohm Smoothing Chokes, each. Ditto, $100 \mathrm{M} / \mathrm{amps}$., $5 / 6$ DC Resistanc
EX-R.A.F. MICROPHONE TESTERS (new)
Th-A. 2 hese cole meter shunced to $1 \mathrm{M} / \mathrm{A}$ incorporated $2 \frac{1}{2} \mathrm{in}$. scale meter Westinghouse Rectifier, the whoe present 0 to polished teak case
SPECIAL OFFER METERS, ALL NEW BOXED. Moving Coil First-Grade Instruments, 0 to 20 volts, $10 /$-each, or 3 for 25/-; 0 to 40 volts, $12 / 6$ each ; 0 to $10 \mathrm{amps} ., 15 /$ - each ; all 2 in . scale. 0 to 20 volts $A C$ calibrated $50 \mathrm{cys}, 25 /-$ each.
EX-R.A.F. IFF UNITS. As new, these units contain 10 valves S.P. 41 s , Ef 50s, EA 50s, etc., also approx. 100 resistances and condensers. also complete with motor generator, input, 450 volts at $50 \mathrm{M} / \mathrm{amps}$. output. $\mathbf{4}$, carriage $3 / 6$ MAINS TRANSFORMERS (NEW), Input 200/250 volts 50 cys. 1 ph., output 350,130 vor at $180 \mathrm{M} / \mathrm{amps} .4 \mathrm{v}$. 2 a $1 / 6$; ditto, $500 / 0 / 500 \mathrm{v}$ $150 \mathrm{M} / \mathrm{amps} .4 \mathrm{v} .4 \mathrm{a}, \mathrm{C} . \mathrm{T} .6 .3 \mathrm{v} .4 \mathrm{a} . \mathrm{C} . \mathrm{T} .5 \mathrm{v}$. $47 / 6$ each, post $1 / 6$; mother, tapped 6,12 and 24 volts at $10 / 12$ amps., $45 / \mathrm{meach}$, post $1 / 6$. Auto wound Voltage Charger Transformers, tapped $0,110,200,220$ and 240 volts 250 watts, 45/350 watts, $55 /-; 500$ watts, $70 /-$ each, carriage $1 / 6$ (Please note, these Transformers can be delivered 10 days from receipt of order.)
MAINS VARIABLE RESISTANCES (New ex-Gove. Stock) Slider type 14 ohms carry 1 to 4 amps ., graduated, usetul as dimmers, 25 ., 25 each, post $1 /$. Another, $1 / 6$ each, post $1 / 6$. Ditto, 450 ohms 0.7 amps . $22 / 6$ each, post I/6, Ditto, 450 ohms 0.7 amps. 4,000 ahms 0.25 amps ., $32 / 6$ each. Ditto, 60 ohms $1 \frac{1}{2}$ amps., 25/-.
ELECTRIC LIGHT CHECK METERS (for garages, sub-leting, $200 / 250$ volts 50 cy I phase, 20 amp. load, 25/- each, post 2/. Ditto $1 /-$ slot type, $42 / 6$ each, post $2 /-1$ Ditto, 2 z
MAINS TRANSFORMERS, Ex-A.R.P. Input 230 volts 50 cys., output 12 volts $8 \frac{1}{1}$ amps., as new, 25/- each, post $2 /-$
SELF-ENERGISING TELEPHONE HANDSETS with wall bracket (new), $12 / 6$ each, or 21/- per pair.
TEST SETS, Type 211, complete with 4 Ef 50s (new), 35/- each. Cell Tessing V/Meters, reading , $1 /$ each, AC V/Meters 6 in. scale, 0 to 300 volts, $37 / 6$ each. Spark Coils fis. spark, or approx. 3,000 volts, from 6 volts tiole each.

ABOUT 2.000 radio enthusiasts are on our mailing list, are you? Hundreds of brandains each month Example: 38 sets, conicains each month pack, all spares, aerials and i.ete with power pack: al spares. anditier at $£ 5 / 10$, get in the know $1.11 / 2 \mathrm{~d}$ stamp to Radio Constructors, 28, Spital YidGET coils, as described in last month's issue, available in all standard ranges; wave (M. and L.) superhet, especially designed for use with the I.R. 5 frequency changer and require only a 2-pote the name Meteor Electronics, Gloucester Row, Wey-RADIO-SERVICE, East Cliff, Lyme Regis ReDorset. New, Goods only: Electrolytics
 2/6; speaker transformers. 40 ma , multi-ratio. 6/6. midget pentode. 5/6: 1.f. chokes, Midget. all values, ws. p. switch.
prompt c.o.d. or c.wo. service. 60 m . 19543 3 RAND new components, 60ma smoothing 500 v electrolytics, $60 /-\mathrm{doz} ; 16 \times 16350 \mathrm{v}$. $60 /$ doz: 4-pole 3 -position w.c. switches. 22 4-40 pi 3 -bank trimmers, $15 /-$ output ormers, 60 ma , $54 /-3 \mathrm{mp}$-way line cord 16 yd; 2 -pole 2 -position switches $21 /-$ doz: resistors from $2 /-$ doz; $1 \ln \times 5 B A$ and nuts. screws and nuts, $4 /-$, terms c.o.d. or cash with order-J. L. Baker, Berystede, St. Helens Rd.
Leanington Spa, War.picks.
K YNRAD SUPPLIES. Ltd., the premier house
Ior the radio amateur. Meters o. 5ma $5 / 6$ each: speakers. Elac $51 / \mathrm{in}$ with transtorme 17tio output transformers. $7 / 6$: 60 ma chokes /6; valve holders, octals or button base 6 d condensers, split stators, 5pf and 10 pimf each; 100 pf , $1 /-; 0.1 \mathrm{mtd}, 150 \mathrm{~V} .1,-50 \mathrm{doz} ; 4 \mathrm{~m}$ each 350 y and 500 v . 4 d each, $5.5 \mathrm{mfd}, 500 \mathrm{v}, 4 \mathrm{each}$ $10 / 6$. This is only a small selection of ou 10/6. This is only a small selection of our Supplies, Ltd., 10 and 12, Spring Hill, Birming ${ }^{\text {ham }} 18$ PECIAL this montn!-Europa superhet radio chassis, 5 -valve ac/dc. medium and long or medium and short, fully wired aligned and tested, ready to switch on, overall 11 in $\times 6 \mathrm{in} \times 5 \mathrm{in}$. .m. speaker, dial, drive on chassis, ready to slide inta cabinet, inductances iron-cored, splendid performance, brand ners; guaranteed, $£ 6 / 5$; superhet assemblies. L.M. \& S. ac model. 66/17/6, ac/dc, $£ 6$, speakers and cabinets available; send postage now for full details of these 66 \& 102 . Parkhill Rd., London, N.W.3. GulTELEVISION hams:-We have the following in stock: CRM91 9in, CRM121 12in tubes, and Ceramic through 300 PF condensers; 1,000 yalves, inc. EL33, EL38, T41, SU 2150 , HVR2-
HVR2A, AC/6 pen, Pen 45, etc. STC. H4/200 rect, coilformers. $5 / 8 \mathrm{in}$ and $1 / 2$ in with adj. dust 75 ohms, twin feeder. resists., chokes and condensers etc.; coming shortly! E.H.T. trans., line trans. Focus and Scanning colls; send for lists; s.a.e. please; all gocds at manufacturers retai. Forest Hill, S.E.23. PRODUCTIONS, 270, Leith - Walk, Edinburgh, 6.-Mail order special not w D surclus: B.I. Hunts, etc. 8 mfds , $3 / 6$ $16+8 \mathrm{mfds}, 6 / 6 ; 8+8 \mathrm{mfds}$. $/ 3$; $16 \mathrm{mfds}, 5 / 6$ 0.25 mfd 25 -volt, $2 / 6$; t.r.f. chassis, $4 / 6 ;$ t.r.f 0.05 .500 v . 8d. each; variable 2 -gang, 0.0005 P.M., 19/6; $61 / 2$ in energised 1,000 ohms, $29 / 6$ 8in P/i. $35063 y$ nd 5 or 4 v heaters $30 /$ - output multi3506.3 and 5 , pin and Octals 7d. each; Amphenol type, 9 d . each; voltage droppers, $0.2 \mathrm{amp} 1,000$ ohms, 3/9; 0.3 amps, $4 / 3$ 1,000 ohms; line cord, best quality, 0.3 amp 3 -core suit per it; special offer, 0.1 minamp metres c.o.d. large muli-meters, British and A malves types; enquire for anything radio; s.a.e. for lists R UCO tuning heart S.M.L. on chassis with wired, tested, and aligned, ready for use, with £5: Ruco conversion chassis, fitted S.MI. dial. 2 -gang condenser, padders. etc. ype $94 /-$ with circuit; our mains noise suppres or for all kinds electrical interference, simple to fit: 16/6; Goodmans 12 in speaker, 150 hm . £6/10, ditto, double cone, $£ 8 / 8$. Avo test bridge $21 /$, with detachable perforated cover, 30 - P.P
 hms) tapped $2.5,7.5$. 150 hms , 21 (- each modulation P.P, trans. for 807 Valves, 30 watts $2-1,12 / 6$ chokes, 80 ma . $8 / 6$, heal 1200 hms . $25 /-$ 20 henries, 100 ma 28 henries, 120 , $36 / 6$ Weymouth S.M.L, Ltd. 265. Whitechapel Rd.
O. GREENLICK.
London. E.1. Tel.: Bls. 5079 .

WIDE BAND R.F. AMPLIFIERS (Amplifier Type Al416A). This unique R.A.F. equipment, designed to feed 7 radio receivers from a single aerial and covering the frequency band 2 to 20 Mcs, is now offered exclusively by M.O.S at $£ 10 / 19 / 6$ (c. paid)
The power supply forms part of the instrument and will operate on normal A.C. mains. The circuit consists of 2 stages of R.F. amplification giving equal amplification between $2-20$ Mcs. The output is fed to seven 75 ohm attenuators, each of which is switched in 7 steps. Each step decreases the output by 2.7 dbs . Valve line up, AL60, 807, 5 UG.
Each Amplifier supplied with a Burgoyne Coaxial Aerial Connector. ALL INSTRUMENTS
R3IT0A RADAR ANTI-JAMMING RECEIVERS. A brand new RAF equipment complete with 15 new valves. Supplied in transit case. Valve line-up: 8 EF50, 2 RL37, I RLI6, I HVR2, I R3, I EA50, and I CVI88. Ideal for conversion to television use. M.O.S. price 64/5/- (carr. and pkg., 5/-)
RADIO COMPASS UNITS, BC433. Made n U.S.A. Complete with 15 valves: 5 Z4, 6 N 7 , 6SC7, 6L7, 6JS, 2 each 6B8, 6F6, 205I, 4 of $6 \mathrm{K7}$. Frequency range 200-1750 kcs. Power supply included IIS v. $400 \mathrm{c} / \mathrm{s}$. Easily modified for broadcast reception only, $£ 7 / 10 /-$ (carr. and pkg., $10 /-$), or less valves, $63 / 10 /$ ((carr. and pkg., 10/-).

HAND MICROPHONES. A superb carbon

 hand microphone complete with lead, jack plug and removable rubber mouthpiece. A pressel switch is incorporated in the handle. The frame you can afford more than one. At the price of $3 / 6$ you can afford more than one (carr. and pkg., 9d.). In cartons of 10 for $29 / 6$ (carr, and pkg., 2/6). New and unused

MAIL ORDER SUPPLY CO.

3 Robert St, LONDON, N.W.I. Callers to: 24, New Rd., London, E.I Stepney Green 2760-3906.

-Infra-red Image Converter Tube

This, in addition to being a highly gensitive photocel! can be used ior the direct conversion of intra-redinto falling on the sensitive layer releases electrons to-red anode where they form is thorescent image stmilar to the infra-red image, PRICE $14 / 6$ each, postage and insurance 1/6 extra. Explanatory leatlet free on request with atamped envelope.
BULL'S EX-GOVERNMENT DEPOT. 42-46, WINDMILL HILL. RUISLIP. MIDDLESEX.

HILL \& CHURCHILL LTD. booksele

SWANAGE, DORSET

Available from Stock
Bronwell, "Theory and Application of Microwaves"" Electronic Circuits and Tubes,", by the War Training Staff of the Cruft Laboratory, Harvard University Sarbacher \& Edson. "Hyper \& Ultrahigh Frequency Engineering" \ldots Starr, "Electric Circuits and Wave Terman, "Measurements in Radio Engineering" Fink. "Principles of Television"
36/-
$$
45 /
$$
$$
36 /-
$$
25/-
42:-

1 ADIO \& ELECTRICAL MAIL ORDER SUP Surrey. Malden 5185.-Send s.a.e. for latest list of radio and elect. bargains, large stocks availwith us you will save pounds; our prices are the lowest you have ever had; American vaives, in ternational series, condensers all kinds, 0.0001 16 mfd . speakers $21 / 2-12 \mathrm{tn}$, high $Q 1 \mathrm{Q}^{\prime}$ s, volume
controls l / s and v / s, large range coll packs. 9632 TEL.RAD ELECTRONICS. 70, Church Rd thing in spares for amateu, S.E. 19 , for everyhome constructor; new goods at manufacturers list prlces; coils, valveholders, tuning condensers, mains I.F, and O.P. transformers, volume controls, pick-ups, speakers, valves, etc.; com-
prehensive stocks of leading prehensive stocks of leading manufacturers' 'phone: Livingstone 4879 . 6 mfd and 1 mfd condensers, $7 / 6 \mathrm{doz}$: signalling $0-3$ thermos with bulb, $3 /-$ ea; R.F. ammeters, ac 50 cycle 75 wate. Incornorating volt de to 230 v tapped auto transformer fuse and selectot switch, etc, beautiful job, \&5,10; American $35 /-:$ alimeters. $4 / 6$. boxed. volume and tone controls, $50 \times \times 500 \times$ separate action, normal size, $3 / 6$ ea; overload swatches. 20a thermal type,
hand reset. $2 / 9$ ea: all our lines maranteed top hand reset. 2/9 ea; all our lines guaranteed toiChe mon:h.-M.E.R., 166, Ashley Rd., Hale. CXPERIMFNTER leaving service area; unfocus colls, £12; hand valve time base with sync separator and all valves, £8: straight recathocie follower band with 5 EF50s diode EFSO modideat.on E12; W1124D valves, requires slight quires modtfica\&on; \&2, transtormer to supply tube filaments, f2; accept $£ 33$ but incluaing G12 12 in speaker, 750 ohm fiend, new cone Rola Box 6410.

「9643
B UILD Your own receiver, basic kit for fivethree waveband coll pack already wired to wavechange switch, snioothing condensers. choke. volune control, mains dropper, two-gang condrilled chassis 13 ain $\times 5$ ill mounted on ready dive, pointer and dian on in $\times 21 / 2 \mathrm{in}$ aiso dial resistors and condensers which can be suppled separately as a suppiementary kit. Valves (6K8 6K7, 647, 25A6. 25 Y5ı, loud-speaker and attrac81/2in. can be supplled if required, powerful perfomance and tone, all necessary instructhons, diagrams and circuit provided with each kit: basic kit only c4/18/6, diagrams and instructlons only $5 /-$ completed kit will be deElectron (London), Ltd. 31 , Curzon $S t$., Lon
don. W. don, W.1. Tel. Grosvenor 1993, also at our agents, 129. Lambecll Walk. S.E.11, and 202 .
Walworth Rd. S.E.l? UPREME RADIO, 746b. Rontord Rd. Manor gains of electrolytics E. nearly cleared Last mon's barrepeat," don trolytics nearly cieared. " cannot 8 mfd , can or card. $3 / 6$: 4 mfd , screw of them
 0.5 mfd 350 v w, $9 /-$ doz; 0.25350 v w. $9 /-$ doz condensers, cardboard. 0.01
0.05350 v w. $5 / 6$ doz: 0.1 j 30 v w w. $5 / 6$ doz doz 750 v w, 5,6 doz; variable trimmers, single 50pf 7 d each, double $140 \mathrm{pf} 1 / 2$, double 50 pi 11 d ; fixed condensers, mica, 0005, .01, 80pf, 325pf, 590pf. 305pf
$570,4,550 \mathrm{pfs}$, all at $2 / 6$ doz, $570,4,550 p t s$. all at $2 / 6$ doz, 1/gw resistances, $100 \Omega 2$
$150 \Omega 200 \Omega$. 300Ω. 4001 ?. $500 \Omega, 2 \mathrm{k}, 2.2 \mathrm{~K}, 5 k$. $150 \Omega, 200 \Omega, 300 \Omega, 4001$?, $500 \Omega, 2 \mathrm{k}, 2.2 \mathrm{k}, 5 \mathrm{k}$,
dok. $20 \mathrm{k}, 100 \mathrm{k}, 250 \mathrm{k} .500 \mathrm{k} .1 .5 \mathrm{k}, 2 \mathrm{~m}$, these in dozens or assorted. 2/- doz. 21/-gross. only while stocks last: also 1/2w $100 \Omega .220 \Omega$, 350Ω known make; 1 w .7 m, at $27 \mathrm{k}, 4 /-4$ doz, all well- 5 w I0k 5/6 doz: Mazda octal valve-holders, bakelite
or Paxain. $2 / 6$ doz: 4-pin U X doz: U.S.A. 4/6 doz: volime contiols. standerd
 doz: 5 k 11 p to 2 meg. $4 /-$ ea: 250 k less sw. $24 /-$
doz: 2.000 w .W.. iess sw. $12 /-$ doz: standerd doz: 2,000 , W.W less sw, $12 /-$ doz: standard
Krid caps. $6 d$ doz: o005 reaction condensers. $12 /-$ (HOP by post, no extra charge; we pay al trical equipment of the highest quality at prices to suit all pockets. Send stamp (2t, no en velope) to-day for our latest lists. Here are a cew examples of the value we offer: R1355 receiving units. comp'ete with go television re volt), i.f. units. transformers suitches conden sers, reslstances, etc. in steel case, wonderful value for money at $30 /-$ each; rotary trans former, 24 v d.c. in $80 v$ a.c. 1,000 cycles, out for operation of all radar unts, etc.. a few only $50 /-$; volume control 12 assorted sizes and types. carbon $15 /-$, wirewound $13 /-$; ex-R.A.F. carbon microphones, all new, $2 / 6$ each: camera motors. 12 or $24 v .7 / 6$ each. magnetic impulse motor with switch $5 /-;$ a-gang 0.0005 tuning condenser in box, all new', 6/6; J.B. slow motion
drive with knob and dial, 2/9: wavemeter typ drive with knob and dial, 2/9: wavemeter, type
1117. complete with matched valves and charts very complete with matched valves and charts. very limited number. 75/a; plus $10 /=$ for tool box type transit case, camera toqtage recorder with
switch. $3 / 6$; engine speed indicaior. contains elec. motor, etc. $7 / 6$. cost over $£ 5$; manometer in teak case, $12 / 6$. - Waltons Wireless Stores

MIDLAND INSTRUMENT Ce

OFFER BRAND NEW

GOVT. SURPLUS STOC

Abstract

GENERATORS (D.C. dymamos) output 12.v. at 751 Watts, 30 --, carriage $5 / \cdot 1155$ RECEIVER twin kno ARMATURE inserts, 2tn, dia, post 9d. BALANCEI upeakers, mlerophones etc., 2,6 post 4 d . RECTIFIEI UNITS tarped input $200 / 250 \cdot \mathrm{v}$. A.C., tapped outpu 160/200-v.D.C.at 1-Amp. 35/-curriage $2 / 6$. BROWN 4000-ohm HEADPHONES with cord and jackplug 10 , pnst 9 d . AMERICAN L.R. HEADPHONE! 7/6, post 9d. MAINS MOTORS. 200/250-v. A.C./D.C generaturs) fitted tín. whaft 30 , post 1/4. MOTORs fitted centrifugal pumps. 12/2-4-v. A.C.DDC. for liyuids only, $35 /$, post $1 / 4$. JONES 8-WAY PLTGS with souketa to 2/6. ELIMINATORS, A.C. input $200 / 200-$ v., D.C., output $120-\mathrm{v}$. at $30-\mathrm{m} / \mathrm{a}$., fitted neon stabilizer, $40 /$ -81-B RECEIVERS, with 8-valves, 2.4 to $6.7 \mathrm{mc} / \mathrm{s}$.. washers 1/b, atrort., 2/6, post 9d. BUBBLE SEX. TANT8 MK-9A with clockwork computor, \&5. ALTI10/ UNITS, $12 \cdot \mathrm{v}$. input, output $300 \cdot \mathrm{v}$, at $100 \cdot \mathrm{ma}$. 25 post 1/4. INSTRUMENT WIRES copper enam., 14-16-$18-22 \cdot 30-33-36-38-\mathrm{swg}$, at $29,3 /-3 / 3,3 / 9.4 / 6$, 4/9, $4-46,5 / 6,6 /=8 /=12 / 1 \mathrm{k}$. Enam $/ \mathrm{g}, \mathrm{c}$ 24-26-swg. at 4-, $5 /-13$, D.c.c. $22 /$ swg. $4 /-1 \mathrm{~b}$. Reel. extra, returnable, up to 1 lb . 4 d . extra. Sealed reels 6d., 1/-, 2/6 extra according to wejght. Reduction or supplies in bulk. Also resistance wires, etc., etc. Order orer current 1hsts, 2 d. with s.a.e. Order over 304 -post-paid, carriageextra, OurC.O.D. shortage. temporarily cancelled because of stafi

\section*{Moorpool Circle, Birmingham, 17}

Tel.: HARborne 1308 or 2664

COIL PICKUP

Heads are available to fit Record Changer Arms

WILKINS \& WRIGHT LTD. Holyhead Road, Handsworth, B'ham 21 .

Charles Britain Hadio olifers:-
 (GOVERNMENT SURPLUS)

BRAND SPANKING NEW Gin. INDICATOR UNIT Type 6A, in thaker's packing. In Grey Metal case, size 18in. $\times 81 \mathrm{in} . \times 7 \mathrm{im}$. Non persistent 6in. Tube type VCR07, auitable for either scope or television. 7 new valves as follows: + EF50, 3 EB34 i 12 potmeters, etc. Price $23 / 10 /=$. Carriage and packing, $10 /=$ TEST SET 74, A mains operated apecial purpose sender (WFF), contuins 11 walves $16 \mathrm{JB}, 1 \mathrm{EADO}, 15 \mathrm{C} 41 \mathrm{HVFQA}$, Tios This unit is easily adapted to an oxcllloscope and is housed in a handsome case, size 18 in. $\times 12 \mathrm{in}$. \times giv. Price $55 / 19 / 6$. Plus curriage sind packing, $15 / \%$.
BRITISH IFF UNIT, complete with 10 valves an motor generator, amazing bargain. Prlce $25 /-$.
INDICATOR TYPE 162 . Contains 2 tubes, 1 VCR517B (6in.), 1 VOR139A (3in.). The following valves: Also one 24 -volt motor and ons meter $0-1 \mathrm{~m} / \mathrm{A}$ complete in strong steel case, size as for test set 74 . Price $23 / 10 /$-. Carriage and packing, 15/.
We have many other interesting items which space does not permit us to advertise. You are gure to
secure a bargain if you call. Gend for ligt "W.W.

CHARLES BRITAIN (RADIO) LTD. Radio House, 2 Wilson St., London, E.C. 2 Phone: BiShopsgate 2966
A. RYALL 65. Nightingale Lane London. S.w. 12 .-Mail order only, postages extra, \& 1 or over; special sale list now ready, enstamp, p.ease; U.S.A. make silver mica, 200pf. f 400pi. $500 \mathrm{pi}, 4 / 6$ dozen: 500 v wky. mica ded 0.004mf, 4/- dozen, $3-2 /$ all condensers anteed: Amphenol type British $5-\mathrm{pin}$ valve ers, $4 / 6$ dozen: U.S.A. pax 1 lin $4-5-6$-pin. $3 / 6$ n: voume controls. 10.000 medium spi type ing, 0.0004 mt short spindle. $5 /-$, har type ing $0.0004 \mathrm{mi}, 5 /-$ resistors. ${ }^{1}{ }^{1}$ Wat thms to 2 meup boards, drilled, less tags. 9w types 6: switches. SB: 2 p , 6w: munature clr
 rds with $9-1$ watt and $1 / 2$ watt res.ap and new: $3-2$ thes with tags $3-3 /-:$ h!yh resistance ones with sponge earpads. with good class onephone, all wired into plug. rubber padded. g type $10 \mathrm{H} / 10991,10 / 9$ pair; metal boxes. g finish with $1 / 4 \mathrm{in}$ paxolin panels, hixing lugs Corner sockets. size $81 / 2 \times 71, \times 31 / 2$ in deep. $6 / 9$ xolin chassis type. 4/6 dozen. meta.-cased mulars. $0.5 \mathrm{mt}, 350 \mathrm{v}$, at $71 \mathrm{~d} C$ Wire ends, Sper dozen; paxolin panels. not drilled. new § ELL'S bargains: $3 W 33,0000 h m$ carbon res, 36 ea : 1.800 W.W. $1 \mathrm{w}, 2 /$ doz: five 1 w rbon, 330,000 and 1 meg . on panel, $1 / 6$, ten nel. $1 /-0^{\text {and }}$ six 0.01 condensers and three res. panel, 9d: metal cased wire end tubulars. ised 0.5 mfd 350 v tubulars. wire ends. $7 /-$ red silver mica, 10 pf., 25 pf.. 400 pf. 200 pi. ica moulded, $0005,001, .002, .003, .004$, Diders: ${ }^{3 / 6}$ doz: international octal Paxolin
 neters $2^{1 \text { inn m moving coil } 0-30 \mathrm{ma}, ~} 7 / 6$ eat all Gove new. irtopa. Maytield Rdilllowing barjete with p cis-up. fio , including P.T.: adustable iron cored ". ${ }^{\text {P }}$ " type coils at ${ }^{3 / 6}$. zach: Summersby high galn m.s. permeability uned, hist I.F.s. 15 high gain. set of thiree. $28 / 6$, standard coits packs. 36 , 6 : osmor colls packs, $33 /-\mathrm{g}$ gcomp.ete. $24-0-0$ including P.T.: Ceramic voltque droppers. ${ }^{.3 \mathrm{amp}} 4$ taps. $5 /-; 25 \mathrm{mfd} \times 25 \mathrm{~m}$ denser drives. $2 / 6$; dials. speakers, chassis. com plete chassis (from $8-0-0$). cabinets (midge cons(ig).-Castle Radio. 11. Mill Lane, Margate, Kent
NEW S.T.C. sel. rectifiers, bridge conn, damp-

 conversions for valve-type chargers. Philjps 367 and Tungar 68504 and 68530 and M / C meters stock: chargers $200-250$ a.c., $59 / 10$. carr extra, rect. equipments in stee case. extra; pet. gen, sets. 1 hp J.A.P., 288 w . $12 / 3.2 \mathrm{z}$, with control box cable and spares. only. otherwise c. w.o. or pro forma; wholesale and retail.Pearce. 60. Gt. Percy St.. London. W.C.1. Ny. AELENIUM hit. and i.t. rectifiers, foolproof postage up to $15 / 1 / 3$ above. Informative data selenium rectiners and charger kits.
 $12 \mathrm{v} 2 \mathrm{amp}, 12 / 6$: 12 v l amp . 10/6: 6v 2 amp . 96 ; 6v L,amp. 5/6: 12 y amp. 7/6: higher voltage types in stock, including
$36 / 6 ; 24 v$
$5 a m p$.
$44 / 6$ many others. 2.5 amp
mew small space type selenium h.t. rectifiers for converting a.c./d.c. sets to metal rectiners 60 ma or 110 v 60ma. $13 / 6$: $120 \mathrm{v} 20 \mathrm{ma} 7 / 6$; ma 13/6; eliminator type, 120 v 20ma. trickle charge rectifier two 8 mfd condensers for 120 v 20 ma rectifier, two 39 mid New crystal diodes, $3 / 9$ eliminatorts no rheostat or ammeter required S.T.C. 12 v 3amp rectifier with 50 watt transtormer and ballast bulb for 2 v to 12 y charger. 45/-: ditto but with 2 amp rectifier. $36 / 6$; ditto but 6 v 2 amp rectiffer for 2 v .6 v charger, $35(-$ ditto with 6 v 3amp rectifier. 42/6. Mains transformer. 75 watt with 12 V 4amp rectifier and ballast walb fo: $2 v$ to $12 v$ charger, $62 /-i$ ditto but glant 6 amp rectifier and 140 wat trickle chat rectiter with transformer $13 / 6$ $6 v 1.5 a m p$ rectifier with 25 watt transformer CHAMPION 43. Upiands way. London, Tel. Lab. a457

THE "FLUXITE QUINS" AT WORK
'Your clothes line won't budge,' panted EE "It's fixed tight with FLUXITE strikes me

Bawled OI "Yes, you're right

You can pull all your might
That clothes line's our aerial, See

See that FLUXITE is always by you - in the house - garage workshop - wherever speedy soldering is needed. Used for over 40 years in Government works and by leading engineers and manufacturers. Of all Iron-mongers-in tins, $10 \mathrm{~d} . \mathrm{I}$ 1/6 \& 3/-

TO CYCLISTS! Your wheels will NOT keep round and true unless the spokes are tied with fine wire at the crossings $A N D$ SOLDERED. This makes a much stronger wheel. It's simple-uith FLUXITE-but IMPORTANT

The FLUXITE GUN puts FLUXITE where you want it by a simple pressure. Price $1 / 6$, or filled, $2 / 6$

Mumanacs sum

 FLUXITEIT SIMPLIFIES ALL SOLDERING
W rite for Book on the ART OF "SOFT" SOLDERING and for Leaflets on CASE HARDENING STEEL and TEMPERING TOOLS with FLUXITE. Price Id. ach FLUXITE LTD.
(Dept. W.W.), Bermondsey Street S.E.

CRYSTAL multiplier unit.-Brand new American equipment containing 807 oscil lator and tuning controls for selecting crystal harmonics, spare valve, accessories, usit type book. etc, $\mathcal{L 3 / 1 5}$, cathode ray tube unit. conversion 4410 . cge $5 / \%$ kit of spares for the American receiver ABKi. 145 items, including 32 valves, resistors. condensers, a dynamotor with extended spindle thich can be con nected for use on $200 / 250$ v, a.c., makes a fine grinding motor; do not miss this bargain. only E5/15, cge patd: receiver R3003 (I.F.F. unit) including 10 valves, geared motor, many usefu components, 37/6, cge. 3/6: Muirhead drives $10 /-$ instrument rectifers. 5 ma., 7in: millia latest lists, sent on recelpt of $2^{1 / 8 d}$. stamp.-W \mathbf{W} kinson's. 204, Lower Addiscombe Rd., Croydon

$\frac{\mathrm{A}}{\mathrm{W}}$DVANCE, sig. gen., Type E.-71, Lymington $\mathbf{W}^{\text {ANTED, Mullard MAS15 cabinet, perfect }}$ $\mathbf{W}^{\text {ANTED, }} 1$ tire; state price.-Box enamelled copper $\mathbf{W}_{\text {partics to }}$ ANownes, 24 , Gulldford Ave.. Hua SERVICE sheets for Ekco A.R.G.399. Plant 358 X Eddystone (Naval B.34) coil and 3.8 power packs. state range.-Smeeton, 83 Vouth. $78 / 33$ rpm recording motor with tracking gear; stale price and condition.-Erewer. $\boldsymbol{H}^{\text {LECTRIC }}$ gramophone motors. $200-230$ a.c. -Radiovox. Oxford Pace. Leeds. 19550 VIBRATOR converier requ.red, 230 d.c.. 15 Sunningfields Rd.. Hendon. N.W.4. 19599 W ANTED, data books or circuit diagrams for and amplifiers; EC499. BC500. BC659. BC340 Box 6880. 19751 Finamelited copper wire, all gauges wanted monds. 10. Valencia Rd.. Stanmore, Middx URGeNTLY needed for export. M.E.A. patpattern 130 and 49 and $4 a$ laminations; Scott's pattern 130 and 4 a laminations or equivalent in to A.W.F. Radlo Froducts. Ltd., Borough Mills. Bradford

8526 WE buy for cash, new, used, radio, electrical radios, radiograms, test equipment, motors chargers, recording gear. etc.- It you want to sell at the maximum price cail, write or phone to University Radio. Lid., 22, Lisie Sq., W.C. 2 REPAIRS AND SERVICE
M AlNS transformer rewound and constructed to any specification; prompt deliveryOUDSPEAKER repars. Bratish, American $1 \leq$ any make, moderate prices.-Sincian mınus 4355 . Pembroke S... Lon, [3308 LOUDSPEAKERS repaired; clock cous, 1 chokes rewound; prompt attention; prices London S.W. rinsformers 17667 Winding, rewinding transformers conblem for quotation.-Singland Radio. 98. Church R EWINDS and conversions to mains and outtiansiormers, from 4/6, p? equipmen spectanty. Ni. Rewinds, 4. Brecknock Rd. A repaired and calibrated accurately and quickly-L. Glaser, 341. City Rd., E.C. 1 (Dept A). Tel. Terminus 2489 . 1) repaired and recaltbrated.-Electrical In strument Repair Service ${ }^{\text {3 }}$ 329, Kilburn Lane.
London $W 9.9$ Tel. Lad. 4168 . A REWIND service which duplicates or modiA fles as required transtormers, lourspeakers etc.: prompt returns. Raldel Serviees. 7 -DAY armature rewinding service; 1 year's - suarantee; complete overhauls to all types 54 Arnewood Rd.. Southbourne. Bournemouth TEST instruments repaired and recalibrated; TEST Avo meters a speciallty; speaker repairs, mains transformer rewinds; E.H.T.s a speciality: Guick service: guara
$\mathrm{R}^{\text {ADIO }}$ and television repalrs for the trade $\mathrm{K}_{\text {at reasonable charges. sets rebuitt. recon- }}$ ditioned and modified to specification, prompt service-Filled Radio \& Television. Ltd ${ }_{i} 9578$ G TURDY rewinds, mains transformers. chokes 5 and fields: we give prompt delivery and guarantee satisfaction, 14 electric Co. prices on requesto-on-Tyne Nlon Latich DIpEWINDING of all types of transformers. IR chokes, etc.i quick bobbins suppiled: new of all types, Transformer Services. 570. Manchester Rd. Hollintood. Lancs

Specialists in
 HIGH POWER - HIGH QUALITY
 PUBIIC ADDASS Sysity WWIIINRS from 150 W to IkW

W. Bryan Savage Ltd

 WESTMORELAND ROAD, LONDON, N.W. 9Telephone : Colindale 7131

COVENTRY RADIO

 COMPONENT SPECIALISTS SINCE 1925 ELECTROLYTIC CONDENSERSNew delivery of Ist grade well-known makes Note our Low Prices.

Tubular Metal, 2 or 4 mid ., 350 volt $8 \mathrm{mfd} ., 450$ volt 16 mfd ., $300 / 350$ volt $8-8 \mathrm{mfd}$., 450 volt Tubular Cardboard, 50 mfd ., 50 volt $25 \mathrm{mfd} ., 25$ volt
$2 / 5$ $2 / 11$ $3 / 6$ $1 / 11$ $1 / 8$
$1 / 8$

Prompt Service, Complete Satisfaztion.

COVENTRY RADIO 191 DUNSTABLE RD., LUTON, BEDS.

Phone : LUTON 2677

[^11]$\mathrm{R}_{\text {wax }}^{\text {EWIND, mains transformers layer wound. }}$ chokes, clock coils, gram and vac. motors; prompt service and competitive prices.-W. Groves 154 Icknield Port Rd., Birmingham, 16 . [9672 $\mathrm{E}_{\mathrm{L}}^{\mathrm{LECTRICAL}}$ measuring instruments. commergenerators skilfully Electrical Instruly repaired and recalibrated. burn Lane. London, W.9. Tel. Lad. 4168, [9724 TNSTRUMENT repairs; Moving coll mecers. descripti-meters, electrical test equipment of ali descriptions. etc.; skilled workmanship; special Repail the rade. Metrepolitan lnstrument T RANSFORMERS, chozes, coils, etc., rewound ity; qualified consulting order, single or quanheip solve your problems engineers available to Ltd.. 2, Pembury Rd. Westcliftert \& Holden. OUDSPEAKER repairs, any 1 prices, prompt delivery to the reasoniole quality fans; 25 years' combined the trade and Rolu, Magnavox. Goodmans, Celestionce with Service Radio, 80, Richmond Rd. Kingston Thames. Kin. 8008. $\mathrm{R}_{\text {EWINDS, mains transformers, speaker field }}^{\text {coil, choke, high-grade }}$ delivery, new transtormers constructed to custo mers speciffcation, singıy or in quantities Metropolitan Radio Service Co., 1021 , Finchie 2 -HOUR speedwell 3000 . 13719 2. 4 transformer rewind, mains outputs and plied to specif types of new transf., etc., s'sppice to specitication; business heading or serCo., 180, Windham prices.-Majestic Winding $R^{\text {EWINDS.-Send your }}$ Bremouth
R EWINDS.-Send your "' burn outs
transformer etc ${ }^{\text {no }}$ technical data wanted; posit dress and marked for with your name, adings are double wound, interleave our windprepnated - Southern Trade Services, imp 297-299. High St., Croydon. Tel. 4870. [988j MISCELLANEOUS
RELAY concession (Scotland).
10,000

pppu-
19725

W inding machines, Douglas No. 1, perfect 2. 538 libs of 26 gauge copper cotton covered lots. wire for disposal, can be split into small
I RAFT interieaving paper, 1 mil. $1 / 6 \mathrm{lb}$; also -Speedwell 2396 . TURTHER copies of our advanced radio serBCM/Circuit, London, W.C.1. available.-Details. W ALNUT'radiogram cabinet, manfs. samples, Walters, 501 , Hale End Rd., $\mathbf{E} .4$. 19773 $S^{\text {TALLOY }} \mathbf{0}$ obout 2 tons, blanks, $153 / 2 \mathrm{in} \times 21 / 2 \mathrm{in}$, clean, about ton, £15.-Speedwell 2396 . 19693 $H^{N A M}$ copper wire on circular hollow bobapprox. one ounce $(\omega 3 / 6$ per 1 b . 47 and 45 s . W. .G., DOUGLAS wave winder, like new, complete prin motor, many extras; f^{60}, or exchange Dortable typewriter, screw-cutting bench lathe.
TTMESWITCHFS, partly used, 14-day. 5 19588 post free, buarh wheed, watertight case, key, etc Upper Norfolk st, Norder, $30 /-$-Donohoe, 2 A MATEUR would like to contac
A wireless engineer in to contact experienced adyice for lay-out, components, etc., for building radio-gram-television set.-Box 6878 . 19744
TUNGSTEN, molybdenum and magnesium wire 1 for disposal, also large quantities of rubber grummetts, 8BA screws and washers.-List from Wolsey Television, Ltd., 87, Brixton Hill, S.W.2 CIRCUIT diagrams (individual designs) to technical advice for radio enthusiasts data and technical advice for radio enthusiasts; special
tuition by correspondence.-Write, R.G. Young. tuition by correspondence.-Write, R. G. Young YPARKS data whets
5 structional details and full complete con-man-prepared prints showing drilling assembly and wiring plans of tested andiguaranteed designs by L. Ormond Sparks.
LATEST release.-The Challenger portable, an ac/dc 3-valve (plus rect.) T.R.F. circuit having an exceptiona performance on med. and long waves, the ideal set for radio in any room. no aerial or earth: 6in Stentorian speaker gives amazing power and quality; no complicated COMPONENTS can now data sheet $2 / 9$. stamp for list giving full details of the 34 da signs available.
SPARKS' DATA SHEETS (W), 9. Phoebeth Rd Brockley. S.E. 4 Tel. Lee Green 0220
WhUORESCENT lighting, huge purchase $80-$ holders, starter button, choke-caparit, $220-235 \mathrm{v}$ a.c. holders, starter button, ready wired, installed in 5 minutes, less tube. 47/6, carr. free, buy tube locally for $£ 1$; tubes for callers, Saturdays, M.T.S-E. J. Williams, 39, Malden Rd., New Malden, Surrey
lectric irons, comble [9631] . UNCTION electric irons, complete with stand very prompt deliveries; blex, again available; plated; the finest electric iron of its chromiumworld; a.c., d.c., in all voltages; with rich in the of other household electrical appliances.-Distributors, Brooks \& Bohm, Ltd., 90, Victoria St.

OPPORTUTITI

* Get this FREE Bor
 "ENGINEERIP OPPORTUNITIE

reveals how you becometechnically-qu

 fied at home for a high paid key-appointment the vast Radio and $T e$ vision Industry. in I pages of intensely int, esting matter, it incluc full details of our up-t the-minute home stu courses in all branches TELEVISION ar RADIO, A.M. Brit.I.R.E A.M.I.E.E., City \& Guild Special Television, Servicin, Sound Film Projection, Sho: Wave, High Frequency, an General Wireless CoursesWe Definitely Guarantee
NO PASS-NO FEE,
If you're earning less than $f 10$ a week, thi enlightening book is for you. Write for you copy today. It will be sent FREE and withoul obligation

BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY 388b, Shakespeare House,
17/19, Stratford Place, London, W.I.

WARD ROTARY
 CONVERTERE

For Radio, Neon Signs, Tele vision, Fluorescent Lighting X-ray, Cinema Equipment anc numerable other applications
We also manufacture :-
Petrol Electric Generating Plants, H.T Generators, D.C. Motors, etc., up tc 25 K.V.A.

CHAS. F. WARD
LORDSGROFT WORKS, HAVERHILL, SUFFOLK Telephone: Haverhill 253 \&

Mr. A. C. BARKER

Thanks the many owners of his MODEL I 48 CONCERT SPEAKER who have written in its praise. To those who have had to wait for theirs he tenders regrets, with tidings of early delivery and further supplies for their friends who own first class amplifiers and seek NATURAL REPRODUCTION. Details obtainable from

BCM/AADU, LONDON, W.C. 1

UMINIUM chassis, panels and screens to your requirements, pain or punched for 3/9:10×6×2. 4/6. -Mead. 13. Bence Lane. ion. Barnsley
S.W.g. impregnated g:ass fibre covered copper wire. 3 tons, new unopened reels ir than cotton covered, offered cheaper, Co . D'Arblay St.WWH WANTED
AC. armatures. etc., rewound: $13 /-\dot{\text { q }}$ quality ACTORY has technical stafi and capacity avarable for manufacturing scientinc 18853 er articles in giass.- ot iron for all radio oicik \& Son, $36-38$, Western Rd., E.13. Gra A. ADIO apparatus can be designed or built to your special needs oy a competent engineer, hnical queries answered, \checkmark make wireless and radiogram cabinets 10 diac, Ltd., 26 . Brondesbury Rd., London,
W.6. Maida Vale 8792 . OMPETENTENTS WANTED
quired to distribute keenly priced resisnce/capacitance bridge in home and export mikets; an important test instrument of exhly. immediately. to Television \& Radio (Reilders) Ltd. 142 , West End Lane N.W. 6 .
BUSINESSES YOMPONENT works (London), suitable live engmeer, turnover stocks and adequate premises; genuine offer: lel. stocks and adequate
rincipals only - Box 561 , c/o Dawsons, 28.
raven St \{ADIO-ELECTRICAL (Birmingham)-Skil fully managed, outstandingly successfuil ockurge; f10,000; book debts and s.a.v.-Haviands.
Rutiand Rd., Bearwood, Birningham, 17. [9510 V. LONDON.-Successful radio/electrical business, excellent profts. manage owner eaving country necessitating immedlate sale ccountant's figures; principals only.-B0x 6875 $\mathrm{R}^{\text {ADIO and cycles. busy mining town in }}$ Derbyshire. good living accommodation in luding 3 bedrooms and bathroom. large work shop. good sales shop in busy shopping centre
(opp. Wootworths). rent and rates $£ 150$ pet lopp. Wootworths) rent and rates increasing good lease; audited accounts; 1946 van avail-
able; $£ 1,000$. s.a.v.-Box 6869 . $T \begin{gathered}\text { He proprietor of British Patent No. } 531963 . \\ \text { entitled }\end{gathered} \boldsymbol{D e v i c e}$ for producing vibrato in entitled ""Device for producing like." offers same for licence or otherwise to ensure practical working in Great Britain,-Inquiries to Singer. Ehlert, Stern \& Carlberg. 28. EASt Jack 19449 PUBLIC NOTICE THE trade mark " Dynamina. registered in respect of rotary electric converters, was assigned
on January 23 rd, 1948 , by Hoover, Ltd. of Perion Januarenford. Middlesex. to Newton Bros (Derby). Ltd., of Alfreton Rd., Derby, without the goodwill

SITUATIONS VACANT
Vacancies adverfised are restricted to persons or employments excepted from fhe provisions
 THE Governing Body invite immediate application for appointment as full-time lecturer in radio engineering to commence in september, 1948. Burnhain scale salary; forms of applicawarded on receipt of a stamped addressed foolR RIGHTON Education Committee.-Brighton B Junior Technical Institute. Principal APPLICATIONS aree invited for the following full-time teaching postclasses in the theory and practice of Radio Mechanics Work, with ability to assist in the training of Electrical Installaton Apprechnical Salary in accordance with Burnham Sorms of application obtainable from the under Forms of applicated on receipt of a stamped addressed fools signed onvelope. Completed forms to be returned cap envelope. Compal. Brighton Junior Technical Institute. Coombe Rd.. Brighton within two weeks of the appearance of this notice- -W. Grightone. A RMATURE winder and stator winder fo small firm with good contacts; exception
good prospects for young man with tion.-Box 5551 . ENIOR Draughtsman, to take charge of small
D.O.; electrical. radio components, mould D.O.; electrical. radio components. mound salary (present, expected) to Box 6881.
R $\boldsymbol{R}^{\text {ADIO and }}$ perienced with Murphy and, E.M.I. be ex efs., Roberts \& Co., 143. North End, Croydon.

RADIO

BRIMAR.-R2, $5 Y 3,3 U 4,80.5 Z 3,5 Z 4,6 \times 3,5 \times 1$ $1 \mathrm{D}^{2}, 25 \mathrm{Z} 4,1 \mathrm{D6}, 0 \mathrm{Z4}, 35 \% 4,15 \mathrm{D} 2,2 \mathrm{D}, 8 \mathrm{D2}, 10 \mathrm{C} 5$

COSSCR.- 4 TITA, $418 T H, ~ 4] M P G, ~ M V S / P L E N ~$ MS/PEN, 5 -and 7-pin, DDL4, DDT, 41MTL, 41 MHL
 $202 \mathrm{VPB}, 202 \mathrm{VP}, 130,807$
MARCONI/OSRAM.-U1n, U14, U16, U17. U18/20, T50, U52, U31, U74, U76. VMP4C, M84B, MSP4 and 7 -pin, Dil. MHD-, M14, MK 4. and

 MAZDA.-UU6, V914, ACP, ACl'en, 5 - hnd 7 . 1 in H1BD, SP13. Pen 383 Pen453DD H1L1:31 H1.2101, QP230, T₹ 22, T'F25, TP2\%, Pen25, QP15, DU207, HL23, HL23D1, VP23, D1, CCH35, DAF91, DF53, DF91, DK91, EA50, EB34, EBC3, EBC33, EF39, EK32, EL2, E1, 22, EL33, EL35, EL37 MULLARD-DW2, DW4/350, FW4/500, AZ1, AZ31, EL38, EM1, EM4, EM34. INH1380, UR34 TH4B, VP4, VP4A, SP4, S- and , Din, 2DA,
 HL13C, VP13A, SP13, Pen 36C, CL4, VF2R, EP2, PM2A, PM12M, FC2, FO2A, Q1 22B, DF2?, KK33,
 HYR2, KVR2
UY21, EF22
PHILIPS.-1821, CY31, C1C, C1, CY
AMERICAN.-OZ4, 1A4, 1A5, 1 B5, 1DT, 11N 5, 1LC 0 $1 \mathrm{S5}, 1 \mathrm{~T} .5,1 \mathrm{~V}, 2 \mathrm{~A} 6,2 \mathrm{~A} 7,2 \mathrm{B7}, 3 \mathrm{~A} 8,305,5 \mathrm{~S} 4,5 \mathrm{~V}$,

 ©S87, $\mathrm{BV}^{2} 6, \mathrm{GX5}, 7 \mathrm{~A} 7,7 \mathrm{H} 7,10,12 \mathrm{Ab}, 12 \mathrm{A6}, 12 \mathrm{C} 8$ $12 \mathrm{J5}, 12 \mathrm{K7}, 12 \mathrm{KK}, 12 \mathrm{Q} 7,128 \mathrm{~A} 7,12 \mathrm{SF}, 12 \mathrm{SK}$,
 $15,17,18,20,22,2524,26,27,32,34,35 A 5,565$,
$35 Z 4,35 \% 5,37,38,42,43,46,48,49,50,53,55,56$, $59,71 \mathrm{~A}, 76,77,78,79,80,83,84,89,9101$ more types
$9001,9002,9003,9004,905,9006$, nnd 101 Order C.O.D. above listed or equivalents (swuec old and new types arriving daily. Old stock at pre indereased und pre-Budget urices.
Just in
PT41, len 4 DD, X41, MX40, 41 MrG. VP:B, KT33C 3516, Peal 36C, SP2, Pen383, PM24M, M1410a.
EXPORT. We are fully equipped for safe packing and espatch from the smallest itern to buik. muediately dad
"GOLDRING" PICK-UP HEAD gives your old Gramophone Radiogrank quality reproduction, ${ }^{\text {M1DGET }}$ SOLDERING " PENCIL " IRON works off OV. car battery. $9 /-$. SERVICE SHEETS, British and American assorted, uitable as mikes, $7 / 6$. EX-R.A.F. TELEScople ALUMINIUM MASTS, Hft, 10/ "RADIO-CRAFT" Anerican Litrary of 10 books ast consignment to come in
TELEVISION-Baird's "GARRICK" Model (kadio-
combine () 12 in . tube giving brimatit pictur
EASY TERMS on all TAYLOR Instruments.
Ex-A.M. Batteries, thert, 120 volts, $10 / 9$.
"PETER PAN" Kit 474U, Universal 4-valver
£13 17s. 9d
"PETER PAN" Kit 486B, Battery 3 -valvel
£10 14s. 2 d .
EATTERY Saperhet Kit, 3-wave, $£ 151$ \%s. 3 d
PLIERS and CUTTERS, Uin. insulated, $5 /-$.
TRIMMER TROL
Alarm Clocks, Electric, £3 18s. 6d.
ELECTRIC Wall or Mantel Clocks. £1 19s. 6d VARLEY 6 v . Accumulator, to suit VibroAte Rool む1 15s. posi
HOBBIES Fretwork Ontfits, frum $9 / 6$.
STOP PRESS
MODEL Maker's Press Outfts, $55 /$ and $84 /-$
MOTOR, electric miniature. 12/6.
WONDER Crystal Set with pair of Healphones, 25/
Please write immediately to BoLls (W.W

I XPERIENCED service engineer required practical pre-war experience with all types or re ceivers--Tel. or call, R.S.S., Ltd., 68a, Park Rd.
N. 8 Mou. 5533 . T enced in preparing literature, publicity and advertising copy.-Write full details of experi ence to Taylor Electrical Instruments, [9677
Montrose Ave., Slough. MTECHNICAL--REPRESENTATIVE Executive with own car; electrical and radio compo-nents--Full details of experience, age, quahin-
cations, salary (present. expected), (travelling expenses are met) to Box 6882. required fo D) ESIGNER - DRAUGHTSMAN required for with Radar and radio equipment construction.With Radar and age, full deatils of experience.
Reply, stating
(9279 traning and salary required to Box 5548 . 9279 YALES engineer for well known radio and elecWest London; post calls for initiative, adapt ability and energy.-Give full detalls, age. perience, qualifics., salary reqd. T ELEVISION Engineer required by R.F. Equaip uated at Hirwaun. nr. Aberdare, Glamorgane Write in first instance
stating qualifications, exp. and salary expected. RAUGHTSMEN required for jig and tool drawing omce, must be famanchester area Apply, giving full particulars of experience HADLEY SOUND EQUIPMENTS require out 1 side radio service engineer, B ham area ood add ess essential.-Apply Works Manager Good add ess essentipments, 587, Bearwood Rd. ADIO Service Engineer required: first-class $\mathbf{R}^{\text {ADpperience of advanced radio and television }}$ receivers; ability to drive car essentater to Per-prospects.-Appir Dersonan Radio, Ltd., Ray Lea Rd. Maldenhead. Berks. of domestic radio reHXPERIENCED designer of domestic radio disthict SW of London; knowledge of television echnicue an advantage.-Write, stating details of qualifications and salary required. to box No. 718 c/o Streets. 110, Old Broad St.. E.C.2. TLECTRICAL component manuracturers reng. preferably with Higher National Certificate or equivalent, for development work on television components.-Write, giving full details and tating remuneration required, to Box 6865 R. M. ELECTRIC, Ltd.. Team Valley, Gatesapplicant must be vacancy piecework and modern radio production methods -Apply, stating age. exp. and sa!ary required.
A SSISTANT engineer for laboratory develop University degree or equivalent and industria experience of receiver measurements essential applicants should state salary required.-Apply Wef. ${ }^{715}$ S.E. 18
$R^{\text {ADIO engineers required for design and test }}$ 1 of latest type radio transmitters and reCity and Guilds final, or equivalent, opening offers good prospects; London area.-Apply, in confidence. glving age, details of education, experience and salary required, to sox equired by CHIEF enginee manufturer in the south to take charge of important department engaged on practical microwave deve'opment; essential qualificaions are adequate techis field of radic: and piactical expersence in this held of radio applicants should state fualifications, 19830
ence, and age, to: Box 7030 . ence. ANIOR Development Engineer required to work on the development and engineering of large screen te.evisicial experience in work of necessary, buture essentlal.-Write, stating age, qualifications and salary required, to CinemaTelevision S E 26
TNIVERSITY COLLEGE, Southampton, inU vites apolications for the post of Lecturer in the Technical Department, southampton, for city and Guilds relecommuniFurther particulars may be obtained from the Technical Officer. with whom applications shoutd be lodged by 12 th June. TECHNICAL assistant required for project section, age $21-26$ years. ex perience in communication and rado eneneerin essential, together with ability to write descipCity and Guilds Radio Part 3.-Apply in writing London. S.W. 18 (Radio Laboratory), stating exR ADIO service engineers for works and field R primaris in London area, well snown company. excellent prospedge radio servicing and minimum of $2-3$ years' retail or industrial ex perience in repail woik; 5-day, 44-hour week; wages according to experience and at prevaling levels.-Apply, stating age, full detans exper
ence, wages required, Box 6866 .

L•R.S IN STOCK

Model 7
Avominor AC/DC Universal Meter
Valve Tester, complete
Avominor DC Meter
Oscillator, Mains
Mator, Mains
New Signal G
Generator available shortly
Enquiries for other models are invited.
Goodman's 12in. Loudspeaker Unit 26150
Stuart Centrifugal Electric Pumps for all pumping purposes. Compact and Efficient. All sizes again available. Please write for specification

Morphy Richards Auto Electric Irons. Chrome superb quality $39 / 6$, post $1 /$ -

All the above available on convenient terms. Illustrated list of any of the above items $1 d$.
The LONDON RADIO SUPPLY Co. (The L.R. Supply Co. Ltd.) Est. 1925 BALCOMBE

SUSSEX

HIGH FIDELITY

A much improved version of our Corner Cabinet is now available, in either whitewood or walnut veneer. Full details on request. Our Feeder Units and Amplifiers are now available from stock.
A prototype miniature HI . FI . receiver and amplifier using button base valves is in course of development and will soon be demonstrated in our showrooms
Components for the Partridge 15 Watt Quality Amplifier are available from stock. Our Price List covering components for High Fidelity equipment will be forwarded on
ROGERS DEVELOPMENTS CO.
106 HEATH STREET, HAMPSTEAD. LONDON. N.W. 3
Telephone: HAMpstead 6901

100 kcs. QUARTZ CRYSTAL UNIT Type Q5/100

for Secondary Frequency Standards * Accuracy better than 0.01%. \star New angles of cut g ive a temperature coefficient of 2 parts in a million per degree Centigrade temperatur change. \star Vitreous silver electrodes fired direct on to the faces of the crystal itself, giving permanence of calibration. \$ Simple single valve circuit gives strong harmonics at 100 kes. intervals up to 20 Mcs * Octal based mount of compact dimensions.

PRICE 45/- Post Free
Full details of the Q5/100, including eircuit are contained in our leaflet QI. Send stamp to-day for your copy

THE QUARTZ CRYSTAL Co., Ltd.

 63-71 Kingston Road,NEW MALDEN, SURREY
Telephone : MALden 0334

A SSISTANT Laboratory engineer required by Aold capacitor manufacturers, applicants should radio engineering or have simite in electrical or radio engineering or have similar qualifications tory work, nowewledge of ce of industrial laboranot essential.-Write of capacitors preferable but ence and salary rite, giving cetails of expertBendon Valley, Wandsworth A. H. Hunt. Litd. PRESS Officer.-The Gieneral Electric Co. Ltd Kress requires an experinenced journalist for the ment. Applicants sloould be under 40 years of age and must have previously been engazed on work of this nature; knowledge of radio and electionic techniques needed-Avply, giving age GEEC. of exp. and salary reqd. to Staff Manager TECHICAL sales representatives requi
ECHNICAL sales representatives required in Newcastle-on-Tyne, Glasfow, Cardiff, by leading sound equipment manufacturers. to deal with Music while Supervise the installation of Equipment; prevous work and Staff Location session of a car essential; salary commission pasexpenses; write, stating previous experience ead
 training and wide experience including instrument and tool work for preference, commencing salary up to $£ 475 \mathrm{p} . \mathrm{a}$.; (b) young man with initiative and preferably some knowledge of electrical layuut and circuit diagrams (A.E.S.D. rate) much interesting development wori for the right age and salary requirec. to Box 6862 . A RADIO engineering firm in Essex (30 miles nical sales lite requires a writer to originate techduction and assist in administration: exproence would range over whole of company's many products and would be valuable to young wireless or eiectrical engineer: degree in electrical engineering or equivalent desirable; keenness and
ability for writing ability for writing of this special kind essential
 deal in the Birmingham and Manchester area to deal with public address equipment and installaand commercial experience technical knowledge other allied trade is essent in public address r cants must be prepared to reside in several monthis for preliminary in London for possession of a car is essential: write givino and detalts as to age. previous experience and salary Tequired. to: Bnx 5522 . 19213 TLECTRONIC development engineer: well gineers interested in electronic design and instrument work, sound theoretlcal knowledge and wide experience of low frequency circuits in particular is essential: vacancies for senior mencing salary academic qualifications com Nat. Cert.. Inter. or C C $\& G^{p}$ a... and junior with up to $£ 350$ p.a.. Write, stating qualifications experience, age and salary required, to Box 6861 QENIOR radio engineer required for Box 6861 . \rightarrow dustrial concern opsrating in the Middle East:, applicants shou!d have had at least 7 vears, experience in technical installation, operation and ma!ntenance of M / F. H / F. and $V H / F$. communication transmitters, superhet receivers and high speed W / T. systems; a knowledge of carrier current technique advantageous; age not over 35 . secondary school education; attractive free passage out and allowance in local currency; allowance and furmished bachelor attention, kit tion.-Write, giving age and full particumodaqualifications and experience, quoting Depart ment F.96, to Box 1075 at 191 . Guoting Depart PHILIPS' Mitcham works have vacancies in their domestic receiver development labora tories for technical assistants; applicants should (engineering withes of 20-30, and be graduate of a recognised university or telecommunications) exempting will involve a study of examination: the work duction of components and complete nass proand successful candidates will be compleceivers work with a minimum of supervision. and to take responsibility for the preparation of to ceivers and associated components for production; some experience of production is an produc tage, salary according to qualifications. -Writ Mitchnmen Manager tion Surrey qu. Lid., New Rd.. Mitcham JuncB.B.C invites G.1. 9674 B.B.C. Invites applications from men (British) ning and Installation Departmenter in the Planplicants, who should not be less in London. Apage. should possess a University degree in tears of trical engineering or equivalent degree in eleccoupled with radio transmitter theory ifications ace. A knowledge of F. M. and Television pracbe advantageous. The successful candida te must be able to conduct correspondence generaly and in particular must have a knowledge of Specification writing and the management of Tenders by annual Increments of taly is on a grade rising £785 per annum E785 per annum, -Applications, stating age. Engineering Establishment once, should reach the House. London. W. pearance of this advertisement.

For Export And Home

Rav. 5225.

समाडSa:

The advance it Radio Technique offers unlimited opportunities of high pay aod aecure posts for those Radio Engineers who have had the foresight to become techolcally qualified. How you can do this quickly add easliy in sour spare the is fully explained in our unique handlook "Enkineering Opportunities." Full detaile are given of A.M.I.E.E., A.M.Brit.I.R.E City \& Guilds Exans., and particulars oi up-to-dat coursea in Wireless Engineering, Radio Servicing Short Waves, Television, Mathematies, etc., otc.

We Guarantee "NO PASS NO FEE
Prepare lor to-morrow's opportunltles and future competition by sending for your copy of this very buformative 112 -page guide Now-FREE.
BRITISH INSTITUTE OF ENGINEERING TECHNOLOGY (Dept. 388)
17, Stratford Place, London, W. 1

ALLANCE'S OFFER

1E FAMOUS B2 RECEIVER, COM-

 PLETE WITH POWER SUPPLY.is receiver is a 4 -valve superhet covering 3 quency bands, $3.0 / 5.0 \mathrm{mc} / \mathrm{s}, 5,0 / 9.0 \mathrm{me} / \mathrm{s}$, $1 / 15.0 \mathrm{me} / \mathrm{s}$. Valve line-up: 7R7 mixercillator, 7R7 lst I.F.-AVC, 7Q7 2nd I. d Ist L.F., 7R7 Det. and audio output. ovison is made for phone or $C . W$. reception itput being taken through a matching ansformer, for headphone operation, but n be easily converted for loudspeaker seration.
ontrols are :-bandswitch, volume, B.F.O. introl and S.M. tuning ; a dial magnifier is ted for easy readability,
$h_{\text {. - receiver }}$ is built in a substantial meta tbinet finished in black crackle. Size 9 lin. x $\frac{1}{2} \mathrm{in} . \times 4 \mathrm{in}$.
OWER SUPPLY is self-contained in black letal cabinet, size $9 \frac{1}{2} \mathrm{in} . \times 4 \frac{1}{2} \mathrm{in} . \times 4 \mathrm{in}$.
uitable for operation on any voltage between 7 and 250 volts $A C$ or $D C$; or alternatively lirect from a 6 -volt source. Additional utput of 500 volt and 6.3 volt.
3oth units are supplied complete in a black noth units are supplied container with lid, and fixing clamps, neasuring $11 \frac{1}{2} \mathrm{in} . \times 10 \frac{1}{2} \mathrm{in} . \times 6 \frac{1}{2} \mathrm{in}$.
Complete with the following accessories:Mains cord with 5 amp. 2 pin plug, plug to B.D. adaptor, B.C. adaptor to Edison Screw ; Pair of Headphones, spare fuses, two serew drivers, Battery leads with clips.
Absolutely Brand New and Unused. Very limited quantity. Price: E9. Plus 5/- post and packing.

Goods can be sent C.W.O. or C.O.D.
VALLANCE \& DAVISON, LTD. 144 BRIGGATE, LEEDS, $1 . \quad$ Phone 29428/9. Stafi call signs : G2HHV, G8SX. G3ABD, G3AHV.

Judix
 B.B. LTD.
 Electro-Mechanical Engineers

- Disc Recording Equipment: Studio and Mobile.
- Gramophone Reproducer Turntables, Synchronous and Non-Synchronous Types.
- Ribbon Microphones
- Specialised Receivers and Amplifiers for Schools Instal. lations.

EXPORT ENQUIRIES INVITED

39/43 WEST HILL, LONDON,
 S.W. 18
 Telephone : BERmondsey 1220

SERVICE mechanic with previous experience 5 of radio repairs, reauired for London, West End--Write, qiving full partlculars, to Box No. W. 774. Haddons. Salishury Sa.. London. E.C.4. $R_{\text {EQUIRED as }}$ technical assistant partment of The tered Patent Agent In Patent Department of the General Electric Co., Ltd., at Research wath an atories. Wembley. Middx., a young man with an honours degree or similar qualincations and pre radio engineering and electronics: the assistant would receive training tor qualification as a Whartered Patent Agent.-Apply by letter only to the Director. stating age. academic qualifications and experience.
M ANUFACTURERS and distributors of wellI known 16 mm sound on film projectors require additional personnel for test and service departments; excellent opportunity for app:1cals with first-slass knowledge and experience all branches this equipinent, who will be required to devote part hne London and pait N. of England: write. stacing age. experience and alary required, to: Box 229. Phillips Adveztis ing. Thanet House. Craven R(nvites applications from men (British) B. B.C. invites applications from men ibritish) Engineering Training Departnent at Evesham; candidates must be graduates in Electrical ene neering or fundamentals and a good malhematical background: teaching, research or manulacturing experience and ablity to write technical articles or manuals are required. Candidates must, in addition, possess either (1) Fundamental knowledge and practical experience in UHF techniques tup to $3,000 \mathrm{Mc}$ s); or (2) Research or de elopment expertence in audio frequency problems involving lines. and/or recording and acoustics: or (3) Research or development ex perience in radio frequency measurements and in the application of electronics to remote contro mechanisms. The salar:es are on araximum of by annual increments Applications. stating age, £840 per annum. Applications. stamg age, qualifications and experfence, should reach the House \mathbf{W}. within 7 days of the appearance of this advertisement

ITUATIONS WANTED

$\mathbf{R}^{\text {ADIO and television service eng... e perienced }}$ ing licence; able to take charge.--Box 6871 drivTNGINEER experienced design and develop E maneer. seeks position: City and Gui'ds Final grade in radio communication and technical electricity, Box 7056 . 30 invalided, 12988 yrs. R.A.F. Signals officer 30 invalided adminis tration, seeks position with opportunity 101
[9820 advancement.- Box 1 IRELESS fitter, ex-R.A.F.age 26. 6 years' W experience in clvilian adio. studyng for A.M.I.E.E.. seeks progressive employment in radio.-Write BM/APH!. London. Wireless op.. 5 TX. Drs. India-Ceylon. 14 Yis. practical exp. TX. Doverseas: Dref. East/Far East.-Box 7055 . HX-CAPTAIN R. Slynals seeks responsible B.Sc., service. theoretical qualifications and wide experience all branches of radio communica-tion.-Box 7035.
[9342
WX-OFFICER, A.MBRITIR.E., with total I of 10 years' experience in various branches of radio engineering. seeks post with scone for initiative; would prefer to he stationed abroad: age 29.-Write Box 6883.

9760
HX-R.A.F. Cpl., wireless hitter, seeks opening Ei in either sales or business side of radio; London or Southern Counties; willing to work for nominal salary tor six months or more providing job With prospects is onglneer (32). Assoc. TELECOMMUN1CATIONS engIneer (32), Assoc. comm..ex foreman of signals. 12 years' exp. telephony. telegradhy. H.P.. Horsible position. Box No. 7. Smith's Library. Bexhill. 19860 TNDIAN, 23 with 1 Class Hons and Research research experlence seeks sultable employment in industry; now doing a post graduate course in Electronics at University College. Southampton; ready to join in September.-Please reply to M. Krishnaniurthi, Sonnaught Hall. Wessex Lane, Swaythling, Southampton.

TUITION
F NGINEERING careers and qualifications.
BOTH Government and industry have announced and emphasised that young men with technica. knowledge and qualifications must receive every chance to rise to the highest positions and their capacity, in post-wa engreerng and allied industry; write to-day for "' The Engineer's Guide to success "-200 courses ree which shows you how you can become A.M.I.E. E A.M. Men. Mechanical, elecbranches in radio, automobile. mech
trical, productlon, aeronautical, erc.
THE Technological Institute of Great Britain 82, Temple Bar House, London, E.C.4. [4918 100 worked examples, advice and notes in10 valuable examination practice. set A for City and Guilds. year one, tesiommumim. tions, principles and 10 - From Box 6382

THESE ARE IN STOCK

Television Receiver Construction. 2s. 6d, Postage 2d.
Radio Valve Data Pocket Book. By F. J. Camm. 5s. Postage 3d.
Television Receiving Equipment. By W. T. Cocking. 12s. 6 d . Postage 5d.

The Cathode Ray Oscillograph in Industry
3rd Ed. By W. Wilson. 18s. Postage 6d. A Practical Course in Magnetism, Electricity and Radio. By W. T. Perkins and A. Charlesby. 10s. 6d. Postage 6d. Foundations of Wireless. By M. G. Scroggie. 7s. 6d. Postage 4d.
Classified Radio Receiver Diagrams. By E. M. Squire. 10s. 6 d. Postage 4d.

Radio Aids to Navigation. By R. A. Smith 9s. Postage 5d.
Radio Data Charts. By R. T. Beatty. 7s. 6d. Postage 6d.
The Principles and Practice of Wave Guides. By L. G. H. Huxley, 21s. Postage 6d.
Radio Engineering Handbook. By Henney. 42s. Postage 9d.
Elements of Radio Servicing. By Marcus and Levy. 27s. Postage 7d.
Frequency Modulation Engineering. By C. E. Tibbs. 28s. Postage 6d.

The Wireless World Valve Data. $2 s$. Postage 2d.
Cathode-Ray Oscillographs. By Reyner 8s, 6d. Postage 4d.

We have the finest selection of British and American radio books. Complete list on application.
THE MODERN BOOK CO.

19-23, PRAED STREET, LONDON, W.2.

6-Valve A/C MAINS R/G CHASSIS, 15-50, 200-600, 540-2,000 Metres with TUNING INDICATOR, TONE CONTROL.

14 Gis. plus P. Tax.
Also available as tuning unit feeding push-pull amplifier. Blueprints can be supplied for home construction if desired. Export enquiries invited
Send $2 \frac{1}{2} d$, stamp for full illustrated lists to
THE TELERADIO CO., 157, FORE STREET, LONDON, N.I3 Tott, : 3386

MORSE CDDE

TRAINING

There are Candler Morse Code Courses for BEGINNERS AND OPERATORS.
Send for this Free "BOOK OF FACTS It gives full details concerning all Courses.
THE CANDLER SYSTEM CO. Room 55W), 121 Kingsway, London, W.C. 2 Candler System Co., Denver, Colorado, U.S.A.

NON-MAGNETIC TURNTABLES
STROBOSCOPIC MARKING
An essential accessory for serious PIGK-UP DESIGN RESEARCH

SOUND SALES LIMITED 57 St. Martin's Lane, London, W.C. 2 Temple Bor 4284
Works : Farnham, Surrey

VBBOAAC ELECTRIC METAL ENGRAVING
Engraves etches. matks TOOL

WE OFFER

A large range of used and new Test Equipment, Converters, Recorders, Amplifiers, Motors, Transformers, etc.
All guaranteed and at very attractive prices.

We buy good modern used equip. ment of all types for spot cash. UNIVERSITY RADIO LTD. 22 LISLE STREET, LONDON, W.C.2.

Tel. : GER 4447 \& 8582.
$\mathbf{R}^{\text {ADiO trating }-P, M, G, ~ e x a m s ~ a n d ~ T . E . E ~}$ Diploma; prospectus free.-Technica loge. HPLE amateur correspondence course covering 12 lessons and C, \& G.l exams. consisting of Correspondence College, 72, St Stephens House Correspondence College, 72, St. Stephens House, DOSTAL courses.
POSiAL courses of instruction for mmateun cates in wireless telegtaphy, Ministry of Civi Aviation Certificate, radio engineering and tele. vision' also instruction at school.-Apoly British School of Telegraphy. Ltd., 179, Capham Rd. London. S.W. 9 (Esid. 40 years) .. If had your copy of this free guide to A.M.I.Mech.E., A.M.I.E.E.. and all branches of engineering, building and plastics? Become echnically trained on "no pass no fee "terms for hleher pay and security.-For free copy write B.I.E.T. (Dept. 387B), 17, Stratford Place. Lon. THHE RADIO ENGINEERING SCHOOL, air fifers full-time resident Hamble. Southampton gineers seeking responsible positions in radio en or civil aviation; students are coached for C and G telecommunications or Brit. I.R.E. exanis. as preferred; tuition also available to M.C.A. requirements in radio and radal..-For to M.C.A ails apply to the Commanciant.
THE Institute of Practical Radio Fngineer 19265 - have available Home Study Courses coverin eiementary, theoretical, mathematical. practical and laboratory tuition in radio and televislon engineering; the text is suitable coaching matter fuitionary. Service entry and progressive exams. -The Syllabus af are moderate obtained, post free from the secretary may be field Rd. Crouch Fiom the Secretary, 20. Fair

> TECHNICAL TRAINING

A M.I.E.E. City and Guilds. etc.. on ". No Pass full details of modern courses in all buccesses; for electrical technology send for our all branches of book, free and post free.-B.I.E.T. (Dept 3g8A) 17. Stratford Place, London. W.1. (Dept. 388A). BOOKS, INSTRUCTIONS, ETC,
WEBB'S radio map of the world locates any on innen. 10/6. post free.-Webb's Radio 1. Soho St.. W. 1. Gerrard 2089 . R. S.G.B. technical publications.-The followamateurs and short-wave enthusiasts:MICROWAVE Technique. "- An up-to-date rreatise on a suiject of vital interest, 68 pages. SERVICE Val
cial equivalents of many and CVurvalents of many hundreds of Service "THE Transmitting Licence., ". How free. an amateur licence. 32 pages. 1 How to obtain RADIO Handbook Supplement, $1 /$ post froe. Radio mathematics, D / F. C.R. tubes, etc. etc. $\begin{array}{ll}168 \text { payes. } 2 / 9 \text { post free. } \\ \text {.R.S.G.B. } & \text { Bulletin "-Monthly pub }\end{array}$ R.S.G.B. $1 / 6$ post free. (Free to members) the RADIO Society of Great Britain. 28, Little
Russell St., London, W.C.1.

TRANSFORMERS \& CHOKES
High Quality Vacuum Impregnated

AUSTIN MILLS LTD.

 LOWER CARRS STOCKPORTTelephone: STO. 3791 Established 20 years.
 Does these $=$
ACCURATELY and QUICKLY Chassir, Brackets, Shrouds, Conden TREPANANTG Stionmer olips Five sizes- 12^{*} Al 36^{*} Five sizes- 12^{*} to 36^{*}
Full particulars
AE A. TOOIS, (W) 197\%, WHITEACRE ROAD ASHTON-UNDER-LYNE

FORREST
(EST. 1922)
FOR - TRANSFORMERS
QUALITY CHOKES, ETC.

- REWINDS (all mates
shirley, birmingham

T.OAK

wafer switelic
The wave-change switch with silv plated double contacts.
A.B. METAL PRODUCTS LTD Great South-West Road, Feltham, Mid

Bopthen
 ROALIT GONYTHORS
 220 D.C. to 220 A.

BEETHOVEN ELECTRIC EQUIPMENTLTD
Beethoven Works. Chase Road, London, N.W. 10

TRANSFORMERS \& COIL TO SPECIFICATION.

MANUFACTURED OR REWOUND Fllter Coils $+1 \%$ a speciality. JOHN FACTOR LTD.
9-1| EAST STREET, TORQUAY, DEVO 'Phone: Torquay 2162

AOC.S. RADIO

SPECIALISTS IN AMATEUR AND EXPERIMENTAL SHORT-WAVE EQUIPMENT. Communfcatlons Receivers, Televisions High Quality Amplifiers, Speakers, Aerials, Receiving and Transmitting Valves and Meters, etc.
A.C.S. RADIO, 44 Widmore Rd., BROMIEY Kent. 'Phone : RAY OI 56

RADIO BATTERY TESTE

Use "Quixo" method of battery testing. Reliable results. Guaranteed. Spad for interesting leafiet RII5 on battery testing.

RUNEAKEN

MANEHESTE

PHOTO-ELECTRIC CELLS

 forTalking Picture Apparatus. Catalogue now available
RADIO-ELECTRONICS LTD., St. George's Works, South Norwood, London, S.E. 25.

[^0]: ${ }^{2}$ Cockroft \& Walton, Proc. Roy. Sor., 1032. Vol. 136, p. 619.

[^1]: - Patents pending.

[^2]: Sullivan direct-reading Universal Inductance Bridge covering IpF to 100 H . Attachments are available for the measurement of capacitance and inductance with superimposed D.C.

[^3]: ${ }^{1}$ Wireless World, December 1945, Vol. 51, p. 3^{38}. p. 36 r .

[^4]: 1 "Cathode Phase Inversion," by O. H. Schmitt, J. Sci. Instrum., March 1938, Vol. 15, * 4 Ph

 Phase-Splitting in Push-Pull Amplifiers," by W. T. Cocking, Wireless World, April 13, 1989, Vol. 44, p. 340.

[^5]: " Electro-Encephalograph Amplifier," by Denis L. Johnston. Wireless Engineer, August, September and October 1947, Vol. 24, pp. 231, 271 and 292.

[^6]: ${ }^{1}$ Journal I.E.E., Part III, May, 1946, P. 153.
 ${ }^{2}$ B.S. 205 : Part I: I943, definition 15 II.

[^7]: This presumably refers to Hivac valves-Ed.

[^8]: DUBILIER COMDENSER CO. (1925) LTD., DUCON WORKS, VICTORIA ROAD, NORTH ACTON, W. 3 'Phone : Acorn 2241.
 'Grams: Hivoltcan, Phone, London.
 Cables : Hivoltcon, London.
 Marconi Internadional Cade.
 D6.

[^9]: MORGAN, OSBORNE \& CO. LTD. WARLING HAM, SURREY tree

[^10]: H. C. ATKINS Laboratories, 32 Cumberland Road. Kew, Surrey.

[^11]: MOVING COIL
 HAND MICROPHONES (No. 13)
 Bakelite case 2 ${ }^{\frac{1}{4}}$ diam. Soft rubber mouthmiece. Coil 40 ohme f.c. res. Excellent periormance. Brand new, in original packing. Incluting postage, 5/- each, or case of ten for 40% Despatched same day, Miniature 30: 1 Hyperloy matching Tranginmera for above, 7/6d. Packing and nostage, if ordered

 ## WIRELESS SUPPLIES UNLIMITED

 (Props. Unlimitex Radio Ltd.)
 264-266, Old Christchurch Road BOURNEMOUTH, Hants

